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I. INTRODUCTION

The response of a nuclear reactor to changes in the neutron
absorption cross-section or other parameters in a localized area of the
reactor core has been the object of much research [1-6]. Interest in
this topic centers around a desire to be able to identify and locate
the source of the changes. Fluctuations in the local neutron absorption
cross sections are often caused by vibrations of the internal com-
ponents of reactor cores. Vibrating internal components such as fuel
elements or control rods generate neutron noise with specific charac-
teristics. Research in neutron noise analysis is being performed in
an attempt to understand these characteristics in more detail. A long
term goal of the research described in this thesis is to be able to
identify and locate moving reactor components in power reactor cores.

The neutron noise generated by vibrating neutron absorbers, usually
referred to as the flux response, is observed using neutron detectors
placed in the reactor core. The flux response is thus interpreted
as a detector response. The response of several detectors located
in different positions in the reactor core may then be used to derive
information about the vibrating absorber. This information is found
from frequency analysis of the detector signals.

The ability to locate moving or loose reactor components has both
economic and safety related advantages. The economic advantages
include the identification of loose control or fuel rods and reactor

internal components. Locating these parts would enable their movements



to be monitored so that further deterioration of the parts could be
corrected before extensive damage occurs. Safety implications relate
to the ability to detect broken or loose internal parts before they
can cause core damage by either direct mechanical damage or the
blocking of a coolant channel. TFor example, a fuel rod which has come
loose in a fuel assembly may, under the influence of coolant flow
induced vibrations, impact upon the assembly support grids or other
fuel rods. This could lead to damage to the fuel rod cladding with
the possibility of the release of fission products. Obviously, a
method which could detect and localize such a vibrating fuel rod is
desirable.

The research which is the topic of this thesis is a continuation
of the work being done at Iowa State University in the area of noise
analysis of vibrating neutron absorbers in nuclear reactor cores,
[5,6] and consists of analytical, computer, and experimental work.

A review of the literature shows that a theoretical development very

important to the present research was introduced by Van Dam [1]. In

his work, Van Dam demonstrated that neutron noise consists of two

independent effects. These effects are termed the local effect and

the global effect. The local effect is space dependent and refers

to the flux response of the reactor at locations very near the source

of the neutron noise. The global response is space independent and

is the overall flux response of the reactor to the neutron noise source.
Pazsit, using Van Dam's detector adjoint function, developed a

two group model of a neutron noise source [2]. This work led Pazsit



to conclude that neutron noise generated by a vibrating neutron
absorber is very space dependent. He also showed that the neutron
noise generated by a vibrating neutron absorber is much different from
the neutron noise which results from a stationary absorber of varying
strength.

A two-dimensional Green's function analysis of the diffusion
equations using one energy group of neutrons was done by Pazsit and
Analytis [3]. 1In their work, they developed a two-dimensional Green's
function model relating small stochastic cross-section fluctuations
to neutron noise for a rectangular slab reactor using modified one-
group diffusion theory. From this development, the neutron noise
response to two-dimensional vibrating neutron absorbers was investi-
gated. The two-dimensional model used in this research will foliow
closely the developments of Pazsit and Analytis [3]. Unlike their
work, however, the model developed accounted for the different reactor
regions (such as the fuel regions or graphite reflector regions of
the UTR-10 reactor used in the study) and included two energy groups
of neutrons.

Similar amalytical work in this area was also done by Nodean [4].
The purpose of his work was to propose a method for determining the
frequency response of a reactor. He did this by solving the one-
dimensional, two-group diffusion equations using Green's function
techniques. The present research expands on this work by doing the
analysis in two dimensions and by applying the model to computer

programs to predict the reactor response.



Previous experimental work at Iowa State University was done by
Al-Ammar [5] and by Borland [6]. Al-Ammar designed and constructed
a device which could place a vibrating neutron absorber into the
Central Vertical Stringer (CVS) of the UTR-10 reactor core. Using
this device, Al-Ammar obtained experimental data which confirmed the
hypothesis put forth by Pazsit [2]. His device verified the presence
of the local and global effects.

Al-Ammar's work was improved upon by Borland [6]. Borland
constructed a vibrating absorber device which incorporated a better
absorber position-measuring system and a sturdier vibrator, thus
eliminating some of the problems inherent in Al-Ammar's design.
Borland's device also had the capability to measure the flux response
with different detector-vibrator configurations. His work verified
Al-Ammar's results.

The experimental portion of the present research extends the
work of Borland and Al-Ammar by investigating the flux response at
detector locations farther away from the vibrating absorber. 1In
previous experiments, the detectors were quite close to the vibrating
absorber, where a large local effect is experienced. By moving
the detectors farther away from the vibrating absorber, the spatial
dependence of the local response can be investigated.

The objectives of the present research can be outlined as follows:

1. Construct an analytical model which describes the response

of the neutron noise field and neutron detectors to a vibrating



neutron absorber located in the internal reflector region of the
UTR-10 reactor.

2. Based on this model, develop computer programs which can be
used to make predictions on the response of the neutron noise field
to the vibrating absorber for the experimental configuration to be
studied.

3. Use an experimental apparatus consisting of a vibrating
neutron absorber placed in the reactor, which approximates the
conditions of (1) and (2), to study the response of a neutron detector
as a function of position in the reactor.

4. Compare and verify the predictions of the analytical model
with the results of the experiment.

The analytical model developed is a two-dimensional Green's
function solution using the two-group diffusion equations for the
response of the neutron flux to a vibrating neutron absorber. The
diffusion equations are written as linear differential equations
which can then be solved essentially exactly using Green's function
methods. The technique of Morse and Feshbach is applied to the
equations resulting in a series form of solution equations which can

be solved using computer programs [7].

Computer programs were written to solve the large number of
multiple mode equations resulting from this development. These
programs are called GFP-24, GFP-25, GFP-27, and GFP-28 and are listed

in Appendix A. The computer was also used to solve the equations for



the unperturbed reactor in the fundamental mode to ensure the model
represented, as nearly as possible, a critical system. This program
is called GFP20 and is also listed in Appendix A. The function of
each program and its relationship to the model are discussed in
Section IV. The LEOPARD code [8] was used to generate the cross
sections for the analytical calculations.

In the experimental phase of the work, the apparatus shown in
Figure 5.4, which was designed by Borland [6], was used to simulate
a moving neutron absorber. The vibrating component of the apparatus
consists of a piece of cadmium attached to the end of an aluminum rod
which pivots on a pin located near the end of the rod, resulting in
a pendulum-like motion. The rod is driven by two electrical coils.
The frequency of the absorber vibration can be varied, and its
position is indicated by a Linear Variable Differential Transformer
(LVDT), which is attached to the top of the rod. This apparatus
was inserted into the CVS in the central reflector region of the
UTR-10 core. Detectors for measuring the reactor's response were
positioned around the apparatus. One detector was placed in the
body of the vibrating absorber apparatus and, therefore, very close
(3.6 cm) to the vibrating absorber. The other detector was also
placed in the central reflector region of the reactor, but in a
stringer located 16.8 cm. radially away from the vibrating absorber.

Figure 5.3 shows the exact detector locations.



A third detector was placed in the Thermal Column of the
reactor (See Figures 5.1 and 5.2). This detector location was not
used in the computer analysis, but the experimental results from this
detector are used and analyzed. This detector provides a measure
of the global response.

Signals from the detectors were analyzed using a frequency
spectrum analyzer and a microcomputer. The results are interpreted
in terms of APSDs, CPSDs (magnitude and phase), and coherence
functions. These experimental results are then compared with the

predicted responses based on the analytical model.



I1I. DEVELOPMENT OF THE TWO-DIMENSIONAL GREEN'S FUNCTION
SOLUTIONS OF THE DIFFUSION EQUATIONS

The Green's function method for solving linear differential
equations outlined by Hildebrand [9] will be discussed in this section.

The form of the diffusion equations for a moving neutron
absorber as used in the analytical model is introduced. The Green's
function solution technique will be used to solve the resulting
equations and a final expression for the real part of the frequency
dependent neutron flux as a function of position in the reactor will
be obtained.

The Green's function method for solving differential equations

is as follows: Given the differential equation

Ly = -S(x)

or Ly + S(x) = 0 § (2.1)
where L indicates the differential operator
_d 290 2
L = F (P d/dx) + q = P d"/dx" + dp/dx d/dx + q (2:2)

and noting that y satisfies the homogeneous boundary conditions of

the form
oy + B dy/dx = 0 (2.3)

for constant values of o and B on the interval a < x < b, a

Green's function, G, is determined which for a given point xo in



(a,b) is G1 for x < X, and G, for x > X The Green's functions Gl

P
and G2 are found by the application of four properties:
T G1 and G2 satisfy LG = 0. That is LG1 = 0 for x < X and

LG2 = 0 for x > X s

2 Gy and G2 satisfy the boundary conditions of Equation 2.3

at the endpoints a and b. G1 satisfies the conditions at x = a and

G2 satisfies the conditions at x = b.

3. The Green's functions are continuous at x = xo; {1.8:; G1 at

X =X equals G, at % = X s and

2
4, dG/dx has a discontinuity of magnitude of —1/P(xo) at X .

dGz(xo) dGl(xo)

dx T dx - ~1/P(x0).

This means

Once the Green's functions Gl and G2 are found, the solution

to the problem of (2.1) may be determined from
Tlx) = T2 Gla,x Y6l Yok 4 (2.4)
a o o o

As an alternate representation, the Green's function is also identified

as the solution of the differential equation

LG = —6(x—x0)

In order to apply the Green's function technique to the solution
of the diffusion equations, the equations must be written in a form
which can be applied directly to this method. The development carried
out will be limited to two neutron energy groups. To this end, let

Group 1 represent the fast neutron group and Group 2 represent



the thermal neutron group.

10

occur in Group 2 and that these fissions produce neutrons in Group 1,

the usual two-group diffusion equations result

DV

$, - (zal + ER1)¢1 + AC + (l-B)vZf ¢2 = 1/ a¢1/at (2.5)

1
and
D.v2. + 3T .6. - 6. = 1/V. 3¢./ot (2.6)
2 T2 R1"1 a2’2 2 72 : '
If the following additional assumptions are made:
1. Use one group of delayed neutrons, i.e.
Bv2f¢2 - AC = 3c/at, (2.7)
2. Assume small changes in the absorption cross-section, i.e.
232 - za20 N GzaZ’ (2.8)
3. Assume that small changes in the neutron flux due to
condition 2 above take place
¢1 = ¢10 F 5¢1 (2.9)
and
¢2 = ¢20 + 5¢zs (2.10)
and 4., Further, assume that small changes in the precursor

concentration due to condition 2 take place so that

If the assumption is made that all fissions



i

C=cC_ +38C (2.11)
the two-group diffusion equations become,

2
D,V 8¢, - (za + le)5¢l + ASC + (1—B)vEf 8¢, =

1
1/vl 86¢1/3t (2.12)
D2v25¢2 - 2R15¢1 - Za206¢2 - 5Ea2¢20 = 1/v2 36¢2/3t (2.13)
and
BVI_6¢, - A6C = 35C/3t . | (2.14)

Note that when the substitutions of (2.8), (2.9), (2.10), and (2.11)
were made into (2.5), (2.6), and (2.7), the steady state terms were
neglected as well as terms involving double differentials, i.e.,

68 << §.

Application of the Fourier transform yields

2 _
D VA, = (T, + By)Bb; +AMC + (1-B)vEghd, = )
§e/v, 84, (2.15)
viAe. + I A I A AL -l
D)V A6y + Ipg88) = I 908%y = 8L 5990 = v, ) (2.16)
BVI A6, - AAC = JWAC (2.17)

where A¢1, A¢2, AC and Aza represent the Fourier transforms of 6¢1,

5¢2, 8C, and GZa, respectively.
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There are two approaches used to obtain the response of a thermal
neutron detector to the perturbation in the absorption cross section.
One method is to solve equations (2.15), (2.16), and (2.17) for A¢2
and form the detector response, R, as the integral over the detector

volume, V_, of the product of A¢2 and the detector cross section, I

d a’

R = deA¢2Zd dv

An alternate and equivalent formulation is to solve for the detector

adjoint function [1,2] ¢ and form the detector response as

R=17[ Y S dv
VR

where VR is the reactor volume and S is the perturbation sources.
The first approach is more direct for a single fixed perturbation
point with variable detector placement, and the formulation in terms
of the detector adjoint function is more useful for a fixed detector
with variable source locations. For the applications in this research,
the first formulation was used since the driving source was fixed in
position.

Equation (2.17) may be rewritten as

szf6¢2

AC = K—;—Ezr-. (2.18)

which upon substitution into (2.15) gives
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ABVE

2 & ___"g._“_ = =
DlV A¢l - (zal + le)A¢l % N A¢2 + (1 B)vZfA¢2
Jw
v, Apy . (2.19)

If the equations are assumed to be frequency independent in the plateau
region of the reactor frequency response (approximately 1 to 10 Hz),

jw can, in effect, be set equal to zero and the Fourier transformed
flux interpreted as the real part of the complex flux. With this

assumption, Equations (2.16) and (2.19) become

32A¢l 82A¢
D1 5 # D1 5 (Zal + ERl)A¢l + (I—B)vEfA¢2 =0 (2.20)
ax 3y
and
32A¢2 82A¢2 ”\\\
D2 axz + DZ 7 = 2320 A¢2 + ZR1A¢]. = Azachzo \ (2.21)

where A¢l and A¢2 now represent the real part of the Fourier trans-
formed flux.

As described previously, Equations (2.20) and (2.21) are to be
solved using the Green's function technique, In two dimensions, the

equations for the Green's functions are

9 G 3 G (Eal + ZRl)Gl (l—B)vZfG2
5 + 5 = D + 5 =0 (2,22)
9x ay 1 1
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and

3 G 9 G ) z
2 2 a20 R1 _
X oy 2 2

Since only the thermal group equation contains a nonhomogeneous term,
the equation for the thermal component of the Green's function, G2,
contains the delta function. The equation for the fast component,
Gl’ is set equal to zero. Equations (2.22) and (2.23) are solved
using the procedure outlined by Morse and Feshbach [7]. This is

done by expanding the Green's function in terms of a complete set

of sine functions involving all coordinates except one, in this

case, Y.
Gl(x,xo,y) "= B Sin Bn X Sin an Yln (y) (2.24)
and
& ) =2 % §in B Sin B.x Y, ( (2.25)
g VXX 0¥ a E=1 Ty VAR RS Lag y). ‘

It is required that the Green's function solutions be zero at both
boundaries in the x direction. If the x dimension extends from

0 to a, then the boundary condition is satisfied by letting

oo

B =EL, (2.26)

n a

Substituting Equations (2.24) and (2.25) into Equations (2.22) and

(2.23) yields
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2 2 2
& . i i +=
. i ( Bn) Sin Bn X Sin an Yln(y), p Sin ano Sin an

2 o8

=1

2
dy, (y) . 5.0
2 z

h; -8 D Rl S L  Sin B x Sin B x Y, O+

dy 1. n=1
(1-8)vE -

£ 2 % GginBx SinBxY, (y) =0 2.27)
Dl a =1 n o n 2n

and

2 @ 2 ®
== -B~ Sin B_x Sin B_.x Y +—I i

4. (-B_ n¥o Sin Byx Y, (y)) * 3 ol Sin B x  Sin B x

2

d°y
2™ Tazg 2% 8in B.x_ Sin Bx¥. (y) +

B £y - y
dy2 D2 a n=1 "o n 2h

le-z-"f Sin B x Sin B x Y. (y)=- 6 (x-x )& (y-y ) (2.28)
52 a1 no o “1n"Y KGO T g7 ’

To take advantage of the orthogonality of the sine functions

a

S if k = n
o

M|

Sin B i =
in B x_ Sin (ka)dx

or 0 if k # n
Equation (2.27) is multiplied by Sin (ka) and integrated from 0 to

a with respect to x. This gives

2 day (z B
-B . 1k _ al R1
K Sin kao Ylk + Sin kao 3
dy 1
(1-8)vE
Sin B.x ¥ e O =
s ik + 5 Sin kao Y2k 0 (2.29)

1
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or

2 (1—8)\)8f

a’y
1k Cha*Iigd vy +—— £ v -0 . (2.30)

2 a
- B 4 - ——— ]k D 2k
k k
dy2 % 1

This procedure is repeated for Equation (2,28) to obtain:

2
dy L )
2k 2 Rl
3 " B T3 Y Y p, I -t0mr) (2-31)
dy 2 2

Equations (2.30) and (2.31) are to be solved for the one-dimensional
Green's functions, Ylk and YZk’ ow 1,280 000

In equation (2.21), let the nonhomogeneous source term nza2¢20

be represented by 6S; i.e. let A232¢20 = §6S. For a moving neutron

absorber in the form of a thin rod, 8S can be represented by [3]
N @ -jwt
6S(x,y,w) =y/__ dt e Jw ¢(xo,yo) [6(x—xo—Ax(t))G(y-yo-Ay(t))

= 6(x—xo)6(y—yo)] (2.32)

where ¢(x0,yo) steady state flux,

X »Y, the equilibrium position of the absorber,

Y the relative absorber strength,

and Ax(t),Ay(t)= motion of the absorber.

Based on the Green's function method, the solution for the thermal

flux response is given as the integral over the reactor volume, V_,

of the Green's function and the driving source.
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Ag, (x,y,0) = Ty GGx ¥,y sw) 88 (x ,y ,w) dx dy . (2.33)
R

Substituting Equation (2.32) into Equation (2.33) gives

A, (x,y,0) =y [y G(x,x ¥,y ,0) dx dyof: at ™3

wt
s ¢(x0’y0)
[8 (x=x_-ax(t))*8(y-y_-by(t)) - 8 (x-x )8 (y-y )] (2.34)

Integrating over"VR and using the property of the delta function

results in the expression

-

© - wt
Bo,(x,y,w) =y [, dt e s [6(x_+ A%,y +AY)G(x,X +AX,y,y +Ay,u)

= ¢2(xosyo)c(x:x0’Y:yo,w)]- (2.35)

The expression ¢(xo+Ax,yo+Ay)G(x,xo+Ax,y,yo+Ay ,) in Equation (2.35)
is expanded about X and using a two-dimensional Taylor's series.

The Taylor's series for a function of two variables is

3 9
f (ath,b+k) = f(a,b) + (h Wt k By) f(x,y)

x=a
y=b
1 3 3 N
+ (e + K g'y-,) EGGY) [ oy + oo " (2.36)
=b

In this case, the series is terminated after two terms. For

convenience, let ¢(xo,yo) be written as ¢ and G(x,xo,y,yo,w) be written
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as G. Applying the Taylor's series and neglecting the AxA&x, AyAy, Axdy

terms yields:

" e -iwt 3 3G
A¢2(X,Y,w) =Y f_mdte + {Ax[axo G + ¢3xo]

3
+ Ay[——ca¢ + 928y (2.37)
Y oy
5] )
Carrying out the Fourier transform indicated in Equation (2.37)

results in

3
3

89, () = v[(g‘-’;— G + 95 bx(w) + (g—‘i’y— e +¢§%—)Ay(w)]. (2.38)
o (8] 8]

o)
Equation (2.38) provides a means of predicting the fluctuations
in the thermal neutron flux resulting from changes in group parameters
due to a vibrating neutron absorber. If the motion is in one
dimension only (i.e., y), the term &x(®) = 0 and the expression

becomes

]
8,) = Yay(w) GE- G+ 45, (2.39)
o} (o]

If G is assumed to be independent of frequency (as is the case for
this development), Equation (2.39) may be inverted back to the time

domain to obtain

d
80,(E) = ¥ by(E) (5= G + b3). (2.40)
(o] (o]

Equations (2.30) and (2.31) and equations for the neutron flux will

be used to find the four terms of Equation (2.39), namely, %3—, G, ¢
o
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G

and %;—, which are necessary to find A¢2. Note that since a thermal
0

detector and absorber are assumed, the thermal component of ¢ and G

are used in Equation (2.39). Also, for a point detector A¢2 is

proportional to the detector response, and integration over the

detector volume is not required.
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III. ANALYTICAL MODEL OF THE GREEN'S FUNCTION SOLUTIONS
TO THE DIFFUSION EQUATIONS

In this section, the procedures for obtaining the Green's
functions solutions for a model of the Iowa State University UTR-10
reactor will be described. These solutions will form the basis of the
analytical model which was then analyzed using the computer programs
described in Appendix A.

It can be seen from the two-dimensional plan view of the UTR-10
reactor shown in Figure 5.1, that a potential difficulty exists in
applying the series expansion procedure described previously directly
in that the core material properties are not continuous in either
direction in the reactor. Since the most significant flux variation
takes place along an axis perpendicular to the fuel regions (called
the y direction), it was decided to use the sine function expansion
parallel to the fuel regions (the x direction). This, in effect,
models the reactor, as shown in Figure 3.1, with the fuel regions
extending to the edges of the graphite core since the sine functions
do not account for variations in core properties. Since the variation
of the flux parallel to the fuel region is approximately sinusoidal,
expansion of the x component of the Green's function in sine functions
should be a reasonable approximation at least for points not too near
the boundary of the reactor.

As shown in Figure 5.%, the UTR-10 reactor core consists of

different regions containing either fuel or graphite. 1In a multi-
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region system, some modifications of the basic procedures, as described
in Chapter II, for obtaining the one-~dimensional Green's function
solution must be made. Continuity of each mode and the equivalent
of continuity of current is required at each interface. The special
Green's function conditions of continuity of the modes and jump in
the derivative of the thermal component of the modes are applied at
the location of the perturbation. For this model, the vibrator is
located in the center of the internal graphite reflector.

In the fuel regions, Equations (2.30) and (2.31), repeated here,

apply directly without modification,

dZYlk oy Far * ra) Y. + bl Y. =0 (2.30)
oy ke Y1k D 1k D, 2k
and
szZk 2 2420 p1
" 2 By Y, - 5, Y, + o, ¥, =0 (2.31)

In the graphite regions, Equation (2.30) must be changed since r _=0

£
there
2
a’y
Lk _ 2y . Cay * ) "
P 1k D, (3.1)
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In order to solve for the Green's functions in the graphite

regions, Equation (3.1) is rewritten as

2

DY
1k 2
a. ¥.. =0 {3.2)
dyz k "1k ,
where
(8. +%..)

'“i = Bi + ——élﬁ———gi— ; (3.3)

Equation (2.31) is also rewritten as

2
d’Y L
= Ty g0 Ty, B W
dy 2
where
T
2 - 2 a20 3.5

The solution for Equation (3.2) is immediately seen to be

-0, ¥ a, ¥
Ylk = Ale L A2e . (3.6)
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The solution to Equation (3.4) will have two parts, a homogeneous

solution YZkH and a particular solution Y

solution comes from

IKP" I'he homogeneous

2

d’Y
21H 2 _ (3 7)
SR .. . . S B Y = () .
dy2 k 2kH

and its solution is given as

“B.Y By
k k
_ Y (3.8)
YZkH A3e Ade
The solution for YZKP is written as
_ "o "
YZkP = ClAle + C2A2e (3.9)

where Cl and C2 are coupling constants which are to be determined.
Substituting Equation (3.9) into Equation (3,4) and equating like

exponentials leads to

-5 D
Cl = g = —2h 2

(af_slf)' (3.10)

Inserting Equation (3.10) into Equation (3.9) and then writing the

complete solution for Y, 6 gives

2K
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¥ Yy
= - k k -
Y2] Yz g & Y2 p A3e + Abe

-a,y o

y
+ [Ale ¥ 4 a%e ¥,

(3.11)

To solve for the Green's functions in the fuel regions, Equations

(3.4) and (3.5) are used and Equation (2.30) is rewritten as

2
d¥5% 2 (1-B)vE . § .
3 T % By = (3.12)
dy k Dl 2k
where ai has the same meaning as in Equation (3.3). A fourth order

equation is next written for YlK alone. This is done by differen-

tiating (3.12) twice to obtain (letting D = d/dy).

4 2 2 (l"B)\JEf 9

D" Y = og DY Yy, + T3 Y Yt o (3.13)

Solving Equation (3.4) for DZY K yields

2

2 g2 Lr1

D" Y5 = "k Ypp - @ Yoo (3.14)

which may be combined with Equation (3.12) to obtain an expression

for YZK
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2 2
o Y "D Y
vy, -k 1k Ik (3.15)

2k (1"3)\)21:'

By

Substitute Equation (3.15) into Equation (3.14), and then substitute

the resulting expression into Equation (3.13) to obtain

4 - 2 2 R1
D Ylk D Ylk (qk + gk) + Ylk (Bk“k - Dl . Dz) = 0.(3.16)
This can be factored into two terms
2 2 z 2
D - =
(D "—") (d°-v5) Ylk 0 (3.17)

where u2 and u2 are obtained by solving the roots of

4 2 2 2 22 (mBhvIgiy,

0. (3.18)

The roots of Equation (3.18) are found by solving the quadratic

equation, thus

3, .32
+
p2 = w2 v2 (o + 8 22

2 2.2
2 i [(ak + Bk) = A(Bkuk —

(l—B)vEfZRl

L
DD, )17 /2 . (3.19)
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The solution of Equation (3,12) may be written as

Yy, = Ase ™Y + a6eY + a7e™ + ase” (3.20)
In solving Equation (3.4) for YZK’ let
Y, = Cle™™ + c2e"” + c3e™7 + cue™’ (3.21)

where Cl, C2, C3, and C4 are coupling coefficients incorporating the
constants A5, A6, A7, and A8. Differentiating Equation (3.21) twice
yields

2

4 Yox

9 =
5 = Clu“e™ + c2u%e" + c3vZe™ + cayZe. (3.22)

dy

Equations (3.20), (3.21), and (3.22) are substituted into Equation

(3.4)

2 =y 2 u 2 - -
Clu“e ™ + c2u®e"? + cavie ™ + cavieY - si cle "7 - Bi c2e?

§ L g z 5
- 8, c3e "7 - Bi c4e®Y + —%1-A5e WY & EL sgeH? 4 BL yo V¥
D D
2 2 2
; (3.23)
_.B.l Aae\’y 1 0
D,

Equating like exponentials gives
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-Z__/D

c1 = ——%1—2—2 AS (3.24)
@ -8
-2 D

c2 = TraP2 A6 (3.25)
7 2
(M _Bk)
-L_./D

c3 = —1;172 A7 (3.26)
v —Bk)
-L_./D

Ch = _,21_22 A8 (3.27)
v -B)

and Equation (3.21) becomes, therefore,

-Z_/D
v =R

2k 012—8

) z. /D
ase ™ + agey - —% (a7 VY + ageVY).

) -
(v Bk)

N

(3.28)

N

The Green's functions for the two-dimensional, two-group problem
are given by Equations (3.6), (3,11), (3.20), and (3.28). To determine
the coefficients Al through A8, appropriate boundary conditions are
applied.

As the analysis progressed, it was discovered that for the first
few modes the root v2 of Equations 3.20 and 3.28 is negative. Because

of this, the terms of (3.20) and (3.28) associated with v2 become, as

long: as vz is negative,
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Ylk = ASe 'Y + aee"? + A7cosvy + A8sinvy (3.20a)
and
-Z_/D Z../D
R'"72 -dy Hy R1'72
Y, = (A5e + A6e ) -
2k 042—35) (u2-82) (A7cosvy +

k

AB8sinvy). (3.28a)

A model of the UTR-10 reactor is now developed. The ISU UTR-10
reactor is a graphite reflected, light water cooled and moderated,
coupled core machine. There are two fuel regions surrounded and
separated by a graphite matrix. The model used in this study defines
a plane through the reactor core which is at the level of the center-
line of the vibrating neutron absorber. Both the graphite and fuel
regions of the model core are homogeneous. Figure 3.1 illustrates
the model. The core dimensions used in this model are taken from
Salih [10].

As pointed out previously, in obtaining the Green's function
modes for the model, the appropriate equations were used for each
region of the reactor with appropriate boundary conditions. Properties
3 and 4 for the Green's function, as discussed in Section III, were used

at the point of perturbation (yo).
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Referring to Figure 3.1 for the locations of the appropriate
Green's function solutions, Yikj(y)’ the application of the boundary
condition requirements will now be illustrated. In the term Yikj(y)’
i refers to the group number and j refers to the region number. The
conditions being applied require a Green's function solution of zero
at both endpoints of the reactor. At each region interface, the
solutions are required to have continuity of flux and current. Con-
tinuity of flux implies the solution on one side of the interface must
equal the solution on the other side of the interface when both
solutions are evaluated at the interface. The current is the deriv-
ative of the solution times the diffusion constant, D, for the region.
Continuity of current means the solutions on either side of an inter-
face will have equal currents at the interface. As an example, the

boundary/interface conditions for the first graphite and first fuel

region require

Y7 (0) =0 (3.29)
Yo (0) =0 (3.30)
Ylkl (bl) = Ylk2 (0) (3.31)
Yoo (bl) =Y, (0) (3.32)
o T ©) e @ )

M~ dy 2F  dy
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Yo By) ¥y, (0) 5. 56)

oM T dy 2F  dy
- .35
Yo (bz) Y1k3 (0). (3.35)

Note that a moving coordinate system was used in the model for the y
dimension. This was done to avoid computer overflow and underflow as
a result of large spatial coordinate values. The imposed Green's

functions conditions give

Ylk3 (yo) = Yo s (0) (3.36)
Y2k3 (yo) = YZRQ (0) (3.37)
5 53333 (yo) lek& (0)

M dy =P T ay (3.38)

dY2k3 (yo) ) dY2k4 (0)
dy dy

= 1. (3.39)

A total of 24 boundary conditions result.
The next step in the modeling is to form the set of equations

which describe the reactor. The boundary conditions are applied to
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the solution equations (3.6), (3.11), (3,20), and (3,28). The result
is 24 coupled equations with 24 unknown coefficients. For the fuel
regions, several additional equatipns must be written to account for
the different solution equations, (3.20a) and (3.28a), which are used
when the root vz is negative. When v2 is negative, these equations
are substituted for the equations used when vz is positive. As an
example, boundary condition (3.31) yields the following equation when

imposed on Equations (3.6) and (3.20):

-a, bl a bl
Ale © +a2e & = a5eH(0) 4 ek (0) o 40 —v(0) | 4o v(0)

or

—akbl akbl
Ale + A2e - A5 - A6 - A7 - A8 = 0. (3.40)

The same is done for all boundary conditions to form the solution to
the two-group problem. The equations are solved simultaneously to
find the desired coefficients. This is done using the computer, as

outlined in the next section.
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IV. COMPUTER MODELING OF THE GREEN'S FUNCTION SOLUTIONS

In this section, the computer programs which were written to solve
the Green's function solution equations are discussed, and each program
is described individually. Listing of the programs is also given
in Appendix A. All programs used double precision arithmetic.

Graphs indicating the results of individual programs are presented,
and predictions of the changing neutron flux due to the moving neutron
absorber are made.

The 24 coupled equations discussed in Section III are to be
solved simultaneously using computer programs. Solving the equations
means determining the coefficients of each solution equation (3.6),
(3.11), (3.20), and (3.28) in appropriate regions of the reactor. To

solve them, the equations are first written in the matrix form

AX=B. (4.1)

The vector X contains the 24 unknown coefficients of the solution
equations. Matrix A consists of the array of system constants
multiplying the unknown coefficients. Vector B contains the elements
of the right hand side of the solution equationms.

The first step in the analysis was to insure that the modeled
reactor ‘represented a critical system as closely as possible. For a
critical reactor, the vector B in Equation (4.1) will be zero. This

leads to
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[ >
| b4
]
o

or

determinant A = jA‘ = 0. (4.2)

The criticality calculation was done for an unperturbed core. This
means that the Green's function conditions at y, are not applied and,
in fact, the interface at ¥ is eliminated. Graphite regions 3 and 4
(see Figure 3.1) are combined. This reduces the size of the set of
simultaneous equations to be solved to 20.

In the criticality calculation, all diffusion coefficients, cross
sections, and all other parameters are the same ones that are to be
used in the perturbed reactor. It was decided to iterate on the
vertical buckling, B§’ to zero the determinant of A to obtain a
critical system. B2 is introduced into the equations in the a2 and

Z

B” terms of Equations (3.3) and (3.5). These equations now become

(z B
2 2 al R1 2
dy = By + ———e———#B, (4.3)
1
P
9 2 , _a20 2
BK - BK D2 . Bz.

2
Addition of the Bz term is justified if V2¢ of Equations (2.5) and

(2.6) is separated into the three components
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Z¢' (4-4)

When this addition is made, it can be easily shown that the derivations
of Sections II and IIT are not changed. The value of Bg is approxi-
mately (w/Z)z, where Z is the vertical dimension of the reactor.

The computer program GFP-20 was written to do the criticality
calculations. GFP-20 calls the library subroutine LINV3F to solve
for the determinant of A. 1In GFP-20 the reactor parameters, cross
sections, etc. are first assigned. As discussed in Appendix B,
reactor parameters were obtained using the LEOPARD code [8]. Next,
the 20 x 20 matrix A is initialized to zero and the elements of A
representing the solution equations are inserted. The program then
calls the library subroutine LINV3F and the determinant of A is
calculated. The program was set up to step through incremental values
of Z until the Z which resulted in a zero determinant was found. At
this point, it was important to make sure that the wvalue of Z found
corresponds to the fundamental mode solution. This was checked by
calculating the neutron fluxes. The desired value of Z (or B;) will
result in all positive fluxes. Any Z other than the fundamental value
gives some positive and some negative fluxes. The critical value of
Z was found to be 74.583 cm based on the reactor parameters given in
Appendix B. The solution was also checked by using the finite

difference, two-dimensional computer code EXTERMINATOR-2 [11] to
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perform an eigenvalue calculation for the reactor model used in the
analytical calculation. The resulting eigenvalue of 0,9974 confirmed
that the correct critical buckling was found.

Four computer programs were written to solve for the four terms
needed for the reactor response, Equation (2.40). These programs solve
for the terms of Equation (2.40) and then produce punched output so
that the total flux response across the reactor can be calculated.
Since the detectors and vibrator used in the experiment are sensitive
to the thermal flux, the computer programs were written to solve for
the Green's functions, the flux, and their derivatives for the thermal
group only. The general form of each program is the same. First, all
reactor parameters are assigned. Next, the elements of the matrix A,
and vector B, if applicable, are calculated and inserted into the
proper locations. The programs then call the library subroutine
LINV3F to solve the equations. The coefficients which are found (as
the elements of vector X) are then used in the proper solution equation
and a numerical answer is produced. Choosing the proper solution
equation to use depends on the position (y) being solved for.

The program GFP-24 calculates the term G in Equation (2.40),
which is the Green's function term. The program, as listed in
Appendix A, will calculate the Green's functions at 61 points across
the reactor core for any value of X. Because the equations for the
Green's functions were originally expanded into a series form

(Equations (2.24) and (2.25)), the Green's functions calculated by
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the program is the sum of many modes. As the mode number k increased,
the matrix A appeared to become progressively ill-conditioned until

a point was reached where the routine LINV3F failed to find the
solution vector. It was observed that for the maximum value of k,

the solution in the fuel and external graphite regions had converged.
For the region containing the perturbation, where the Green's function
is sharply peaked, convergence was found not to be satisfactory when
the limiting value of k was reached for the whole core calculation.
The program is designed to run the maximum number of modes possible
(13 were used) when the solutions for the whole core are calculated.
The program then refines the numbers by repeating the mode calculation
for the central graphite region only using zero boundary conditions
on the additional modes, which, in effect, forces the solution to the
converged values at the edge of the fuel. This procedure allowed

8 more modes to be added to the 13 modes already calculated. This
method produced a convergence of 0.005 at the point of perturbation.
That is, the difference between the 20th mode and the 21lst mode is
0.005. Since the value of the Green's function at this point is
0.32825, this convergence represents an error of 1.5%. A plot of

the Green's functions across the midplane of the reactor through the
perturbation point is shown in Figure 4.1. 1In this graph, and the
others which follow, the perturbation is located in the center of the
central graphite region of the reactor. Since the Green's function

describes the response as a function of position due to a point
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Figure 4.1 Green's functions at x=55.88 cm as calculated by GFP-24
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perturbation, the sharply peaked nature of G implies that the response
near the perturbation should be sensitive to changes in vibrator
position (the dG/dyO term).

The next computer program, GFP-25, calculates the term dG/dyo,
the change in the Green's function associated with a change in per-
turbation position. Since the variable does not appear explicitly
in G, a finite-difference technique was employed. The Green's function
is calculated twice at each desired point, once with the perturbation
located at the center of the core and once with the perturbation
moved an amount Ayo = 0.02 cm in the +y or south direction. The
difference between the two Green's functions at each space point is
divided by the step size and an approximate derivative is produced.
It should be noted that the derivative is a function of x and y
for a given As is expected, dG/dy0 was found to be greatest
where the Green's function is increasing the fastest, at the center
of the core. Because of the approximate nature of the calculation,
the sensitivity of the result to the step size and two point
approximation was checked using different step sizes and also a
three point calculation. As might be expected, because of the nature
of the Green's function, the solution was found to be sensitive to
these parameters for locations near the perturbation point, Based on
the sensitivity study, it was concluded that a two point estimate of
the derivative with a Ayo of 0.02 cm yielded acceptable estimates of

dG/dy0 for the experimental locations used in the study.
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The flux term of Equation (2.40) is calculated by the computer
program GFP-27. The flux solutions are the fundamental mode solutions

to the steady state diffusion equations. The thermal flux solutions

can be written as

$, = sin ’T—z < - (4.5)
where 721‘ is the solution to the one-dimensional diffusion equation.
GFP-27 finds the fluxes using the same matrix as is used in GFP-20.
The coefficients of the solution equations are found by adding the
identity matrix to matrix A and then calling library subroutine
EIGRF to evaluate the eigenvectors and eigenvalues of the resultant
matrix. The coefficients are the elements of the eigenvector
corresponding to the unity eigenvalue. Figure 4.2 shows a plot
of the relative thermal flux. This shows a higher peaking in the south
core due to the larger fuel loading there (see Appendix B).

The last program used to evaluate the reactor response was GFP-28.
This program calculates d¢/dy at the point of the perturbation. Since
d¢/dy is a function of the perturbation location and not detector
location, it was necessary to find only one value. The program is a
modification of GFP-27 which uses a finite-difference technique similar
to GFP-25. The value of d¢/dy found by GFP-28 is 0,01353 for the

center of the core.
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The next step in the analysis was to combine the four terms of
Equation (2.40) calculated by the programs GFP-24, GFP-25, GFP-27, and
GFP-28 into one result which represents the reactor thermal flux
response, This was done by obtaining program output for G, dG/dyo,
¢, and d¢/dy0 on punched cards, which were then assembled as the data
deck for a plotting program., The program is called PLOT and is listed
in Appendix A. PLOT was used to generate four graphs, The graphs
illustrate the detector response across the core in the y direction
for two fixed positions in x corresponding to locations used in the
experimental measurements, Each x position is shown for the whole
core, and also for the central graphite region. Figures 4.3 and 4.4
show the response through the center of the core where the perturbation
is positioned with the x plane located at x = 55.88 cm. The point at
71.12 cm on these graphs (the perturbation point), therefore,
represents the maximum flux response made at this point. In Figures
4.5 and 4.6, the x plane is moved to x = 41.67 cm.

Figures 4.3 and 4.4 illustrate that the detector response drops
off rapidly along the centerline of the reactor with increasing
separation between the vibrator and detector., This is indicative of
a large local component of the response near the vibrator. The
change in sign across the vibrator location simply indicates that
there is a 180° phase difference between the responses on each side
of the vibrator.

Several other features were noted from the data used to plot

Figures 4.3 and 4.4. The small peak in the response shown in
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Figure 4.3 is located just inside the south fuel region. There is

also a similar peak, althoueh smaller, just inside the fuel on the
other side of the south core. These peaks were not found in the north
core. It is not known if these peaks are real or simply the result

of residual oscillations from the modal solution for G, It was

also noted that in a small region (from approximately 111 to 128 cm)
just outside the south fuel region toward the edge of the core in the
graphite, the sign of the response changes. This would indicate that
the response in this region is in-phase with the response on the
opposite side of the vibrator. Again, it is not known if this effect
is real or simply due to oscillations in the modal solution.

Figures 4.5 and 4.6 show the response across the reactor in a
plane approximately 14.2 cm from the vibrator. The response, in this
case, also shows a strong local component, The small peaks in the
south fuel region and the change in sign in the graphite region
appear also in these calculations, In both cases, the two terms in
Equation (2.40) add on the right side of the absorber and subtract of
the left side. The term dG/dyO dominates the solution for the detector
so the sign of the response is the same as the sign of the derivative.

In the experimental portion of this work, neutron detectors were
placed at three locations; two in the central reflector. (at x =
55.88 cm, y = 68.26 cm and x = 41,67 cm, y = 59.61 cm), and one fully
inserted in the central stringer of the thermal column with the near
end of the detector approximately 58.42 cm from the center of the

reactor. One of the purposes of this study is to compare the measured
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and predicted responses of the detectors located in the central
reflector. To eliminate the need to estimate an appropriate value
for v to use in Equation (2.40), results were interpreted in terms
of the ratio of the response rather than an absolute value. A
summary of the prediction is shown in Table 1.

The calculated ratiocs of detector responses shown in Table 1
confirm the highly localized characteristics of the response. These
results also illustrate the sensitivity of the calculated response
of the detector near the vibrator to the assumed detector positionm.
This behavior should be kept in mind when comparing the experimental

and theoretical responses.



Table

1. Computer based predictions of flux response to a

moving absorber

84, () B, y=68

Detector Position G BG/ayo ¢ 3¢ /3y YAY () Ratio[ﬂ$zﬂ§:§§

x = 55.88 cm

y = 68.26 cm 0.1675  -0,03602  7.086 0,01353 -0,2576

X = 41.67 cm 8.587

y = 59.61 cm® 0.02971 -0.004290 7.086 0.01353 -0,03000

x = 55.88 cm

y = 69.06 cmb 0,2401 -0.04524 7.086 0.01353 -0.3173 10.58

aBased on distance from detector centerline to vibrator centerline.

b
Based on distance from detector edge to vibrator centerline.

6%
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V. EXPERIMENTAL EQUIPMENT AND RESULTS OF MEASUREMENTS

In this section, the results of the experiment which was performed
to verify the predictions of Section IV will be presented. In addition
to the actual flux response ratio, other data such as detector phase
plots and coherence functions will be discussed. Short descriptions
of the UTR-10 reactor, experimental equipment, and experimental methods
are also included.

The UTR-10 reactor is an Argonaut type coupled-core system. It

is light water moderated and cooled. Each core region is surrounded

by graphite which serves as a reflector. The maximum licensed power

of the reactor is 10 kilowatts.

The central graphite region of the reactor contains five removable
stringers which may be replaced with experimental devices. The
experimental work done for this research involved using two of the
stringer locations. The vibrating neutron absorber and one detector
(detector 1 of Figure 5.3) were placed in the Central Vertical Stringer
(CVS). Another detector was placed in a stringer located northwest of
the CVS (detector 2 of Figure 5.3) in the internal reflector. Figures
5.1 and 5.2 show plan and elevations views of the reactor core. A
third detector was fully inserted in the central stringer location in
the thermal column. The detectors used in the internal reflector
were N. Wood model G-5-9, 5/8 inch (1.59 cm) x 9 inch (22.9 cm) BF

3

detectors operated as ion chambers, and the detector used in the
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thermal column was a Westinghouse model 6377 compensated ion chamber
(CIC). The current output from the BF3 detectors was measured by pre-
amplifiers locally constructed, (Ames Laboratory) which produced a
voltage output. The output from the CIC was measured by Keithley model
417 picoameter. All signals were bandlimited using a high pass filter
(Krohn-Hite model 3321) set at a cutoff of 0.1 Hz and a low pass filter

(local construction) set at 15 Hz.

The vibrating neutron absorber used in this research is the same
apparatus used by Borland [6]. It consists of a graphite block which
fits into the CVS. It has slots for detectors, as well as a hollow
center for the vibrating neutron absorber parts. The vibrating
absorber is a small piece of cadmium metal attached to an aluminum
rod. The rod is suspended in the graphite block by a pivot in the
top of the assembly. The rod is driven back and forth in the graphite
block by two electrical coils, also located in the top of the device.
These coils alternately attract iron plates secured to the top of
the rod creating a vibrating motion in the Cd strip. This motion
has a maximum amplitude of 1.28 cm. The centerline of the motion is
approximately 2 inches above the center plane of the reactor. A
linear variable differential transformer (LVDT) was used to measure
the motion of the absorber. The apparatus is shown in Figure 5.4.

The signals from the detectors and the LVDT were sent to a
HP3582A Spectrum Analyzer. The analyzer uses the Fast Fourier

transform to obtain the frequency content of the signals. The square
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root of the Auto Power Spectral Density (APSD), transfer functions,
transfer function (TF) magnitude and phases, and coherence functions

are all available on the analyzer. The cross power spectral density
(CPSD) is not measured directly, but can be calculated from the
appropriate APSD and transfer function (TF) using the equation CPSD =
TF/APSD. A HP 85 minicomputer was used to store data from the analyzer,
calculate the Cross Power Spectral Density and generate plots of the
results. All runs used rms averaging with 16 averages.

Reactor flux response to a moving neutron absorber, such as was
used in this ‘experiment, can be thought of as having two separate
components. These components are the local response and the global
response [1,2]. The local response is due to the flux depression in
the area of the reactor very near ‘the neutron absorber. The global
response is the overall reactor flux response to the absorber moving
in a flux gradient. As the absorber moves into a region of greater
flux, negative reactivity is added to the reactor and the whole
reactor flux level falls. Similarly, when the absorber moves into
a region of less flux, positive reactivity is added and the flux level
increases. The effects of the local and global flux responses add or
subtract depending on detector placement relative to the vibrator. A
detector near enough to the neutron absorber to experience a local
response will indicate a total response greater or less than either
the local or global response alone depending on whether the components

are in phase or not.
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The detector in the CVS (detector 1 of Figure 5,3) is close
enough to the absorber to see a large local effect. It is assumed
that the other BF3 detector (detector 2 of Figure 5.3) and the CIC
will see only the global response. Since at the time the experiment
was run, the south core had a larger 'fuel loading than the north core,
calculations served to indicate that there was a positive flux gradient
through the central graphite region from north to south (Figure 4.2).
The higher flux was in the south core. For this distribution, when the
absorber moved north it added reactivity and the overall flux level
(i.e., the global response) increased. However, the detector in the
CVS was on the north side of the apparatus and was exposed to a
decreasing flux due to the local response. Thus, the local and global
responses are out of phase for this detector. If the local response at
the location of this detector is greater than the global response,
the resulting composite signal will be out of phase with the rest of
the detectors. Data will be presented which show that this is the
case.

The LVDT signal was also found to be out of phase with the global
response. This was determined by moving the absorber by hand and
observing the LVDT signal on a digital multimeter. Both the CIC and
the BF3 detectors undergo a phase shift of 180° due to the detection
electronics. For this reason, the global response signals will be in

phase with the LVDT. The local response signal will be out of phase

with both the LVDT and global response signals. A summary of the
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expected detector responses and LVDT signal is shown in Figure 5.5
where the global component is based on a positive flux gradient from
north to south. Phase changes other than 180° resulting from sign
changes are assumed to be negligible. Thids includes the phase of the
reactor frequency response (approximately 110) and a small phase shift
through the instrumentation.

The experiment was run with the reactor at a power level of 200
watts. The vibrating absorber was excited with a 1.5 Hz square
wave signal and with a pseudo random binary sequence (PRBS) signal.
The graphs of interest, produced by the minicomputer, are the APSDs
of the individual signals and the phase, coherence, and CPSD plots of
combinations of the signals.

The APSD is a measure of how the "power'" of a signal is dis-
tributed in frequency. The APSDs of the signals will first be
examined. Figures 5.6 through 5.10 are plots of the background
signals indicated by each detector. In these plots, and all that

follow, detector 1 refers to the BF., detector in the CVS, detector 2

3
refers to the BF3 detector in the other stringer, and thermal column
detector refers to the CIC located in the thermal column. Figures
5.6, 5.7, and 5.8 show the detector spectra at a reactor power of
200 watts with no absorber motion. Figures 5.9 and 5.10 show the

BF3 detector's signals with the reactor shutdown but the vibrator

in motion. These measurements were taken to check for noise from
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the coils or other parts of the detection system electronics., An
additional check for noise pickup was made by operating the vibrator
at 1.5 Hz with the vibrator blocked so that the cadmium strip could
not move and with the reactor at 200 W, ©No indication of a 1.5 Hz
response was found in the spectrum of any of the detectors. These
plots establish a baseline which indicates a bottom level for
determining the usefulness of data. For the BF3 detectors, this level
is approximately 10_'9 v2/Hz,and for the CIC it is approximately

10-7 v2/Hz.

Figures 5.11 through 5.17 show the APSDs of the three detector
signals and the LVDT signal for the 1.5 Hz square wave and PRBS
inputs. Several points are interesting to note on these graphs.
Figure 5.12 shows the PRBS signal for detectors 1 and 2. The signal
for detector 2 is seen to be only at the level of the background,
thus, PRBS information from detector 2 is probably meaningless.

The same is seen to be true for the CIC. This is because the "power"
of the PRBS signal is spread out over a frequency band. The APSDs

of each detector signal for the periodic absorber motion are seen to

be well-above background levels. The LVDT signal for the PRBS input

(Figure 5.17) shows that a frequency band out to about 5 Hz is

present in the signal.

Next, the relationships between signals will be discussed. These

relationships include phase information, coherences, and CPSDs. Of
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special interest are the coherence plots. The coherence function

is defined as

2
CPSD12

(APSDl)(APSDz)

s (5. 1)

The coherence function provides a measure of how well two signals are
correlated. A coherence of greater then 0.5 indicates strong
correlation with a coherence of 1.0 being complete correlation. All
phase information was found to be as expected, with detector 1 180°
out of phase with detector 2, the CIC, and LVDI. CPSD plots are used
to show the relationship between signals as a function of frequency
as seen by two detectors or a detector and the LVDT.

The Figures 5.18 through 5.23 show the phase, coherence, and
CPSD information between detector 1 and detector 2. Figures 5.18 and
5.19 show the coherence functions for 1.5 Hz and PRBS inputs,
respectively. The periodic signals are strongly coherent at the
fundamental frequency and its harmonics but the PRBS case shows a
very small coherence. This indicates that PRBS information for this
combination of signals is essentially meaningless., The phase plots,
Figures 5.20 and 5.21 show the expected 180° phase shift for the
periodic signal. No information can be inferred from the phase plots
of the PRBS signal because of the very small coherence. The CPSD
plots (Figures 5.22 and 5.23) show a strong signal for the periodic

input; the PRBS CPSD is, however, not very meaningful.
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Figures 5.24 through 5.29 show the detector 1 - CIC detector
signal combinations. The coherence for the periodic input (Figure
5.24) shows a very strong correlation and the coherence of the PRBS
(Figure 5.25) is low but larger than for the detector 1, detector 2
combination, The common induced components in the signals apparently
are strong enough to contain some information. As expected, the
phase plots (Figures 5.26 and 5.27) show the 180° phase shift for
both the 1.5 Hz and PRBS signals. At this time, it is necessary to
note that when the spectrum analyzer sees a phase shift of more than
1800, it flips the signal to the opposite sign. These phenomena
can be seen in Figure 5.27 around 1 Hz and, in general, other phase
plots. A comparison of the CPSDs (Figures 5.28 and 5.29) shows that
the PRBS case generates considerably less common responses in the
two signals than the periodic input.

The next set of graphs, Figures 5.30 through 5.35, show the
detector 1 - LVDT signal combinations. These signals show the
strongest relationship of the experiment. Strong coherence is seen
(Figures 5.30 and 5.31) for both the periodic signals and the PRBS.
The phase graphs (Figures 5.32 and 5.33) show the 180° phase shift
between the signals as expected.

Figures 5.36 through 5.41 are for the detector 2 - CIC detector
combinations. The coherences, Figures 5.36 and 5.37, show trends
similar to those previously observed with the periodic input having

a stronger coherence than the PRBS input. Both the periodic and
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PRBS phase plots (Figures 5.38 and 5.39) indicate the response at the
CIC and detector 2 are in phase. Since both detectors see only the
global response, this is as expected. The CPSD for the PRBS

(Figure 5.41) shows a small common response.

Figures 5.42 to 5.47 show the signal combinations for detector 2
and the LVDT. As can be seen in Figures 5.42 and 5.43, the coherence
is strong for the periodic signal, but the PRBS signal shows little
commonality. Although it shows considerable scatter, the periodic
signal seems to show about zero phase shift (Figure 5.44). This is
what is expected. More averages are needed in this plot to smooth
out the curve. The PRBS phase (Figure 5.45) also shows scatter and
is probably meaningless, as indicated by the low coherence. The
CPSD of the detector 2 - LVDT combination (Figure 5.46) shows a
strong peak at the fundamental frequency, but the PRBS plot (Figure 5.47)
is again quite low. The reason it has as high a magnitude as it does

is due to the powerful contribution of the LVDT signal.

The final set of graphs in the set, Figures 5.48 through 5.53,
are of the thermal column CIC detector and the LVDT, These graphs
show good correlation (Figures 5.48 and 5.49), phase information
(Figures 5.50 and 5.51), and CPSD plots (Figures 5.52 and 5.53) for
both the periodic and PRBS signals. The reason the CIC appears to
see a larger response to the vibrating absorber than detector 25

even though it is farther away from the absorber, is because it is a

larger detector and has a higher efficiency.
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VI. COMPARISON OF EXPERIMENTAL RESULTS
WITH THE THEORETICAL MODEL

The ratio of the responses of detector 1 and 2 was calculated
from Equation 2.40 using the results from the theoretical model. As
reported in Table 1, this ratio is 8.59 based on a separation between
the vibrator and detectors that is equal to the centerline to center-
line distance. When the distance from the vibrator to detector 1 was
changed to the distance from the vibrator centerline to the near edge
of the detector, this ratio was found to be 10.6. The measurements
were also used to obtain the response ratio. From the plots of the
detector 1 and 2 APSDs for periodic motion (Figures 5.11 and 5.13),
the actual flux ratio corresponding to the calculated ratio is given

by the ratio of peak APSD values at 1.5 Hz.

1/2

Ratio = (APSD /2/(APSD ) .

)l
detl det?

Recall that the computer program calculated the square root

of the APSD. The ratio of response is found to be

~6.1/2

(3.61 x 1002/ 462 x 107812 = 9,07

This measured ratio falls between the two calculated values
given in Table 1. As pointed out in Chapter IV, the calculated
ratio of responses is sensitive to the assumed location of the near
detector to the vibrator. In the model, the vibrator is assumed
not to displace graphite, whereas in the actual reactor there is

an air void. This will affect the rate at which the response drops.
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This might be accounted for by using an effective separation distance
for the calculated response. These results serve to indicate that
an appropriate effective spacing falls between the centerline to
centerline spacing and centerline to detector edge spacing.
Comparisons of theory and measurements of a qualitative nature
can also be made. The theoretical model predicts that the response
will drop off rapidly with distance between the detector and vibrator.
The results of the measurements support this calculation. The model
fails, however, to predict the 180° phase change between the two
detectors in the internal reflector. This phase shift would appear
as a change in sign between the two detector responses. There may
be several aspects of the model which contribute to this failure to
model the phase correctly. Among other points; (1) the flux gradient
at the vibrator location may not be correctly predicted (the dG/dy
term), (2) the fuel regions are not correctly modeled at the edges,
and (3) additional modes may improve the convergence resulting in

better agreement between theory and experiment.
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VII. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

Since the actual reactor flux response ratio measured by the
experiment and presented in Chapter VI falls in the range of the
ratios predicted by the computer programs and presented in Chapter
IV, it is concluded that the Green's function model of the UTR-10
reactor represents a reasonable first step in a theoretical development.
Refinements can be made in the model to make it more consistent with
experimental results. These refinements include reviewing the cross
sections and other reactor parameters used in the model, and devising
a way to add more modes to the solutions. The present value of 21
modes is restricted by problems in the library subroutines. These
problems stem from the inability of the computer to handle the ill-
conditioned matrices encountered in the higher mode solutions of
matrix A. Adding modes to the solutions could improve the calculated
value of the Green's functions. It would also be desirable to
improve the calculation of dG/dyO. In addition, it would be interesting
to develop a model which accounted for the graphite regions at the ends
of the fuel tanks.

Another conclusion which can be made from the experiment is that
the phases between the detector signals and the absorber motion were
consistent with the local-global interpretation of the response. The
global response of detectors was readily identifiable from the phase
shift associated with the reactor transfer function, e.g. detector 2

and the thermal column detector. The coherence function was found to
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be a useful indicator of the commonality of signals for the purpose
of phase shift measurements. When the coherence function was greater

than 0.2, meaningful phase information was obtained (Figure 5.25

and 5.27).
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X. APPENDIX A: LISTING OF COMPUTER PROGRAMS

This appendix contains listings of the computer programs used
in the Green's function modeling of the UTR-10 reactor. The first
program, GFP-20, uses the criticality equations to calculate the

determinant of matrix A.
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26
27
28.
29.
30.
31.
2.
33.
4.
35.
36.
37.
38.
39.
40
41.
42
“3.
G44.
45.
46a
47
48.
49 .
50.
S1.
52.
53.
S4.
55.
56.
57.
58.
59.
60.

//C300

JoB8

//STEP1 EXEC

//GO0.SYSIN

$J08B
c
c
C

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DouBLE
DOUBLE
DOUBLE

U3T780.WJK

119

WATFIV.REGION= 192K L IB=*SYS2.WATFIV.IMSL.DOUBLE"

oD =

*WJIH*s TIME=5,PAGES=10

THIS PROGRAM IS GFP20-1T CALCS. DET A FOR 2 GROUPS

THE PROGRAM IS USED TO LOCATE THE VALUE OF Z WHICH RESULTS
IN A ZERO DETERMINANT OF MATRIX A

PRECISICN
PRECISION
PRECISION
PRECISION
PRECISICN
PRECISICN
PRECISICON

PleSIGAOMsSIGAFL oDF1L«DF 2L+sA1+B1+B2+B3,BGs+BES
YOeSRMeSRFLeSFL#ySFRyNULsMULA2»QLsRLsNU2L sMUZL
BTFLsBT2FL+BK+sSAMsSAFL+DM1+DM2+BETA
DEXPsDSGRT +F ISL «BZ+DABS»DSINSDCODS

BTMsBT 2Ms ALFLsAFL+ALMs ALZMWSTEP2Z

SIGAFR+sDF IR+ DF2R+SAFR+SRFR+BT2FR+BTFR
ALFR»AFR+FISR+MUZRsMUR+NUZR+NURsQR+RR

REAL A(20+20)+B8(20)+G1(100)+G(100)+WKAREA(TO0)»D1+sD2+DET
ITeJeKeLeMosNsIAs IDGToIERS IJOB P

INTEGER

PI=3.14

1592654

THESE ARE THE TwO GROUP PARAMETERS

SIGAOM=0.00030¢€¢61
SIGAFL=
SIGAFR=

DF1L=1.
DF1R=1.

DF2L=0.
DF2R=0D.

0.0554085
0.055719
421447
421447
231576
231576

DM1=1.152864
DM2=0.991210
BETA=0. 0065

SAFL=0.
SAFR=0.

002076
ooz2082

SAM=0.5326368D-07
SFL=0.08233
SFR=0.083%7

SRFL=0.

03364

SRFR=0.03447
SRM=0.00287363
Y0=22.65
B5=32.36
Ba=16.11
B3=22.65
B2=16.11
B1=32.36
B3=Y0+83

THIS 15 THE ESTIMATED VALUE OF 2

I=67.

Al=111.760
THIS 1S THE STEP SIZE BY WHICH Z IS INCREMENTED IN THE SEARCH
STEP=0.1
THE MAIN LOOP CALCULATES A NEW DET A FOR EACH Z
DO 20 K=1+100
I=Z+S5TEP

BZ=(PI/Z)3*%2.

IJOB=¢&
N=20
1A=20

THE ELEMENTS OF A ARE INITIALLY SET=0. FDR EACH STEP
DO 10 I=1,20

B(I)=0.

DO 11 J=1,20
A(I#J)=0.
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61. 11 CONTINUVE

62. 10 CONTINUE

63. D1=0.

6he c THESE STEPS CALCULATE THE SOLUTION EQUATION PARAMETERS
65. BK=(PI/A1)%%2.

66 BT2M=BK + (SIGAONM/DM2) +BZ

67 BTM=DSORT(BTZM)

68 BT2FL=BK+(SIGAFL/DF2L)+B2

69, BY2FR=BK+(SIGAFR/DF2R)+B2

70. BTFL=DSGRT(BT2FL)

T1e. BTFR=DSQRT(BT2FR)

T2. ALZ2M=BK + (SAM+SRM)/DM1+BZ

T3 ALM=DS5QRT(AL2ZM)

Tba AFL=BK+ (SAFL+SRFL)/DF1L+BZ

75. AFR=BK+ (SAFR+SRFR)/DF 1R +BZ

T6e ALFL=DSQGRT(AFL)

77« ALFR=DSQORT(AFR)

T8, A2=(SRM /DM2)/(ALZ2M=-BT2M)

T79. FISL=(SFLZSRFL)/(DF1L%DF2L)

80. FISR=(SFR%*SRFR)/(DF1R%=DF2R)

8l. MUZ2L=(AFL+BT2FL )/2.+DSORT( (AFL+BT2FL)%%2.~4%=(BT2FL=AFL-FISL)) /2.
B2. MU2R=(AFR+BT2FR}/2.+DSOQRT( (AFR+BT2FR) %+2.~4%(BT2FREAFR-FISR)) /2.
83. MUL=DSQRT(MU2L)

84, MUR=DSQRT(MUZR)

85. NU2L=(AFL+BT2FL )/2.-DSQRT{(AFL+BT2FL)**2.=4%(BT2FL=AFL-FISL)) /2.
86. NU2R=(AFR+BT2FR)/2.~-DSORT((AFR+BT2FR)%%2.~4L(BT2FRXAFR=FISR) )} /2.
87. NUL=DSQRT(DABS (NUZ2L))

BB. NUR=DSQRT(DABS (NU2R))

B9. QL= (SIFL/DF2L) /(MU2L=BT2FL)

90. QGR=(SFR/DF2R) 7 (MU2R=BT2FR)

9l1. RL==(S5RFL/DF2L )/ (NU2L*BTZ2FL)
92. RR=-(SRFR/DF2R)/({NUZR+BT2FR)
93. e MATRIX A IS LOADED HERE

94. Alls1)=1.

95. All,2)=1.

96. Al2+3)=1.

97. A(Z2e4)=1.

98. A(3+1)=DEXP(=ALMZBE1)

99 A(3+,2)=DEXP (ALMZB1)

100. Al(3+5)=~-1.

101. A(3+6)=-1.

102. A(3,7)=~-1.

103. A(3,8)=0.

104. A(G 1) ==A2%DEXP(-ALM%B1)

105. AlG+2)==A2%=DEXP(ALM%B1)

106. A(4,+,3)=DEXP(-BTM=E1)

107« Al4+6)=DEXP(BTM=ZB1)

108. Al4+5)=QL

109. A4 +6)=QL

110. Al4+7)=RL

111« A{G+B)=0.

112. A(S+1)=-DM1BALMIDEXP( ~ALM%B1)
113. A(S+2)=DMIZALMIDEXP(ALMZBL)
114. A(5+5)=DF1L=MUL

115. A(5 +6)==-DF1L%=MUL

116. A(5+7)=0.

117. A(548)==DFIL%HNUL

118. AlGs1)=DM2%A2HALMEDEXP( ~ALM=B 1)
119. A(6+2)==DMZZAZSALMUDEXP (ALMOB 1)

120. A(6 +3)=~-DM22BTMEDEXP(~BTM%B1)
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A(6+4)=DM2=BTMZDEXP(BTM®B1)
Al6+5)==DF2L*=QLEMUL
A(6,4+6)=DF2L%=QL ¥MUL

A{6+7)=0.

A(6+8) =DF2L #RL *NUL

A(T+5)=DEXP (=MULZBZ)

A(T7+6)=DEXP (MUL=B2)

A(T7.7)=DCOS (NUL=B2Z2)
A{74+8)=DSININULNB2)

A(T»9)="1.

A(T7»10)="1.
A(B+5)==QL=DEXP(=-MUL=B2)
A(B+6)==QL%DEXF (MUL%B2)
A(B+7)=~RLEDCODS(NUL%EB2)
A(B+8)==-RLEDSIN(NUL%B2)
A(B,9)=A2

A(B,s10)=A2

Al(B.s11)=-1.

A(Bs12)=-1.
A(9+5)=-DF1LEMULZDEXP (=MUL%=B2)
A(9 +5)=DFIL=MULZDE XP (MUL%:B2)
A(Ss7)=~DFILENLL=DSIN(NULZB2)
A(9+B)=DFILENULZDCOS (NUL%:B2)
A(9s9)=DM1Z=ALM

A{9s10)=-DM1ALM

A(10+5) =DF2L=0LEMULZDEXP ( =MUL %B2)
A(10+6) ==DF 2L %= CLE=MULZ=DEXP (MUL #B2 )
A(10,7) =DF2L%=RLENULEDSIN(NULEB2)
A(10+s8) =-DF 2L=RLENULZ=DCOS(NUL%B2)
A(10,9)==-DM2%AZ2ZALM
A(10s10)=DM2=A2ALM
A(10+11)=DM2ZBTM
A(10+12)=~DM2EEBTM
A(119)=DEXP(~ALMZB3)
A(11+10)=DEXP({ALMZB3)
Alllel3)=-1.

Alllelt)==1.

A(1ls15)==-1.

All1s16)=0.

A(1249) ==A22DEXP(-ALM=B3)
A(12+s10)==A2%DEXP(ALM%B3)
A(12+11)=DEXP(~-BTM:B3)

A(12+12 )=DEXP(BTM=:B3)
A(12+13)=0R

A(12+16)=QR

A(124+15)=RR

A(12+,16)=0.
A(13+9)==-DMIXALMEDEXP(=ALM%:B3)
A(13,10)=DM1%=ALMZDEXP(ALM%*B3)
A(13,13)=DF 1R%VMUR
A(13,14)=-DF1RZ*MUR

A(13+15)=0.

A(13,16)=-DF1RENUR
A(164+9)=DM2%HA2SALMEDEXP (~ALMXB3)
A(14,10)==DM2%A2%ALMAEDE XP (ALM=B3)
A(l4,s11)=-DM2%:BTM=LDEXP( -BTM=B3)
A(14,12)=DM25BTMRDEXP(BTM%:B3)
A(l4s13)=-DF2REQR%:=MUR
A(14,14)=DF 2R%¢CRE=MUR

A{14,15)=0.
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A(14+16)=DF 2ZR=RRENUR
A(15+13)=DEXP(~-MURZB4)

A(15+14 )=DEXP({MURZEG)
A(15¢15)=DCOS (NUR%B4 )
A(15+16)=DSIN(NLRZB4)
Al(15,17)="1as

A(l15,18)=-1.

A(16:13)==QR=DEXP (~MUR%B& )
Al{l6s14)==QR=DEXP (MUR%B4)
A(16+15)=-RREDCCS(NUR%B&)
Al16+16)="RREDSINI(NURZB &)
A(16.,17)=A2

A(16+18)=A2

All16,19)=~1.

Al16+20)=-1.
A(17+13)==-DF1RZVMURZDEXP ( ~MURZB4&)
A(1Te14 )=DF IR=MURZDEXP ( MUR B4 )
A(17+15)==DF IR*NURZDSIN(NUR%B4&)
A(17+16)=DF IRE=NLRZDCOS( NUR%B4 )
A(17:17)=DMIZ=ALM
A(1T7¢18)=-DMIALM

A(18+13)=DF 2Ru*QR&*MURSDE XP( “MUR%B &)
A(18+14 )=-DF2R%QR*MURSDEXP (MUR*B4)
A(18,15)=DF 2RE*RRENURZDS IN(NUR%B4& )
A(l1Bs16)=-DF2R2RR=NUR=DCOS (NUR%B &)
A(1Bs17)=~DM2uA2%=ALM
A(1B+18)=DM2%AZHALM
A(1Bs19)=DM2:=BTM
Al1B8+20)==DM2=BTM

A(19: 1T7)=DEXP( -ALM=BS)
Al(19418)=DEXP(ALM%:B5)
A(20417)==A2%DEXP(~ALMEBS5)
A(20518 )==A2%DEXP(ALMZBS5)

A(20s19 )=DEXP(-BTM:B5)
A(20,20)=DEXP(BTMZBS)

C THE SUBROUTINE LINV3F IS USED TO CALCULATE DET A
CALL LINV3F (A+BsIJOBsN+1A«D1 +sD2+WKAREAWIER)
C THE PROGRAM STOPS IF A TERMINAL ERROR IS RECIEVED FROM THE
C SUBROUTINE. THE TERMINAL ERROR INDICATES THAT THE
C DETERMINANT IS NEAR ZERO.

IF (IER.EQ.130) GC TO 25
DET=D1%2 .%:D2
WRITE (6.,12) DET.2Z

12 FORMAT (* THE CETERMINANT IS *,E12.5:* AT Z= *+FB8.5)
20 CONTINUE
25 STOP
END
SENTRY
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The next program, GFP-24, calculates the Green's functions,



1.
2.
3.

Se

Ge

Te

8.

9.
10.
Ll
12.
13.
144
15,
16.
17
18.
19.
20.
21e
22.
23.
244
254
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41
42
43.
G4
45,
46.
47
48.
49.
50.
Sle
52.
53.
54,
55.
56
57
58.
59.
60.

//7C300
//STEP1

J 0B

//FORT «SYSIN

C

EXEC

U3780.WJH
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FORTGCG+REGION=300Ks TIME=(+40),LIB="SYS1.IMSL.00UBLZ"

51

THIS PROGRAM 1S5 GFP24PL-IT CALC5./PLOTS THE G.F. FOR 2 GROUPS

DOUBLE
DouBLE

PRECISION
PRECISICN

PleSIGAOMSIGAFL «DFIL+DF2LsA14B1+B2+,B3.P4,B5
YOu SRMsSRFLySFLsSFReNULYMULs A2 0L «RLsNUZLsMUZL

DOUBLE PRECISICN BTFL+BT2FLsBK+5AMsSAFL2DM1.DM2,BETA
DOUBLE PRECISION DEXP+DSQRTFISL +BZ+DABS+DSINSDCOS
DOUBLE PRECISICON BTM«sBT2MsALFLsAFLs ALM:AL2M+STEPZ
DOUBLE PRECISION SIGAFR+DFIRsDF2R+SAFR+SRFRBT2FRBTFR
DOUBLE PRECISICN ALFR+AFR+FISR«MU2RsMURsNU2Rs NUR+ORRR
DOUBLE PRECISICN Y2K1+Y2K2+Y2K2:Y2K4:Y2K5+Y2K6

DOUBLE PRECISICN Y3:XO0sYsBBsYBsX14G1

REAL A(24+24)sB(264)+WKAREA(TOO0)sD1+4D2sX(100)+sG(100),G3(100)

INTEGER IsJsKsLsMsIA+IDGTs IERsIJOB,Y1

PI=3.141592654

THESE ARE THE TwO GROUP PARAMETERS

SIGAOM=0.00030661

SIGAFL=0.05540%

SIGAFR=0.05571¢9

DF1L=1.421447

DFIR=1.421447

DF2L=D.231576

DF2R=0.231576

DM1=1.152864%

DM2=0.991810

BETA=0. 0065

SAFL=0.002076

SAFR=0.002082

SAM=0.5326368D-07

SFL=0.08233

SFR=0.08397

SRFL=0. 03364

SRFR=0.03447

SRM=0.00287363

Y0=22.65

B5=32.36

B4=16.11

B3=22.65

B2=16.11

B1=32.36

Z=68.32755

Yl=61

Al=111.760

STEP IS THE SIZE OF THE INCREMENTS IN Y ACROSS THE CORE

STEP=142.,24/60.

X0=55.88

X1=55.88

¥=0.

BZ=(PI/Z)%%2,.

1J0B=2

N=24

IA=24

THIS 5TARTS THE MAIN LOOP WHICH CALCULATES THE GREENS
FUNCTIONS AT EACH Y

DO 50 L=1.Y1

X(L)=Y

G(L)=0.

THIS IS THE MODE LOOP- THE LIBRARY SUBROUTINE RETURNS
A TERMINAL ERROR MESSAGE FOR K>13



125

61. DO 20 K=1,13
62, e INITIALLY THE ELEMENTS OF A AND B ARE SET=0.

63. DO 10 I=1.24

64. B(I)=0.

65. DO 11 J=1,24

66. A(TI+J)=0.

67 11 CONTINUE

68. 10 CONTINUE

69. B(14)=1.

70 D1=0a.

Tl c THESE STEPS CALCULATE THE SOLUTION EQUATION PARAMETERS
72. BK= (K&P I/AL )52,

73. BT2M=8K + (SIGAOM/DM2) +BZ

Tas BTM=DSORTI(BT2M)

75. BT2FL=BK+(SIGAFL/DF2L)+BZ

76. BT2FR=BK+(SIGAFR/DF2R)+BZ

% BTFL=DSQRT(BT2FL)

78, BTFR=DSGRT(BT2FR)

79. AL2M=BK + (SAM+SRM) /DM14BZ

80. ALM=DSQRT(ALZM)

81. AFL=8K+ (SAFL+SRFL)/DF1L+BZ

B2. AFR=8K+ (SAFR+SRFR ) /DF 1R+B2

83. ALFL=DS GRT( AFL)

84. ALFR=J2S GRTUAFR)

85. A2=(53M/DM2)/ (AL2M=-BT2M)

86. FISL=((1.-BETA)®SFLESRFL)/(DF 1IL&DF2L)

87. FISR=((1.-BETA)%*SFRESRFR)/ (DF IREDF2R)

88. MUZ2L=(AFL+BT2FL)/2.4+DSQRT((AFL+#BT2FL )42, -4 (BT2FLHAFL-FISL)) /2.
89. MUZ2R=(AFR+BT2FR)/2.+DSORT( (AFR+BT2FR)%%2. -4 (BT 2FREAFR-FISR)) /2.
90. MUL=DSORT(MUZL)

91. MUR=DSQRT(MU2R )

92. NUZL=(AFL+BT2FL)/2.~DSORT{ (AFL+BT2FL) %2, =4 (BT2FLAAFL=FISL)) /2.
93. NUZ2R=(AFR+BT2FR)/2.-DSQORT( (AFR+BT2FR) 42, ~4=(BT2FREAFR=-FISR)) /2.
94. NUL=DSQRT(DABS (NU2L))

95, NUR=DSQGRT(DABS (NUZR))

96. QL=(SRFL/DF2L )/ (MU2L=-BT2FL)

97 GR= (SRF R/DF 2R) / (MU2R=-BT 2FR )

98. RL==({S5RFL/DF2L )/ (NU2L+BT2FL)

99. RR=={5RFR/DF2R )/ (NU2R+BT2FR)

100. IF (NU2L.LT.0.) GO TO &0

101. RL=(SRFL/DF2L)/(NU2L-BT2FL)

102. 40 IF (NU2R.LT.0.) GO TO 41

103. RR=(53FR/DF2R )/ (NUZR-BT2FR)

104, c LOAD MATRIX A HERE

105. 41 Allsl)=1.

106. A{ls2)=1.

107. Al2,3)=1.

108. A(2+8)=1.

109. A(3,1)=DEXP(~ALM:B1)

110. A(3,2)=DEXP(ALM2BE1)

114 A(3,5)=-1.

112. Al3,6)=-1.

113, A(3,7)=-1.

114. A(3,8)=0.

115. Alf+1)=~A2%DEXP ( -~ALMEB1 )

116. A(&+2)==A22DEXP (ALMEB1)

11Fs A(4+3)=DEXP (=B TM2B1)

118. AlG+4)=DEXP(BTN%B1)

119. A(4,5)=0L

120. A(G+6)=0L
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Al4,7T)=RL

Al(4+8)=0.
A(54+1)==-DM1ZALMZDEXP(-ALM=B1)
A(542)=DM1IZ:ALMIDEXP(ALM:=:B1)
A(5+5)=DF1L=MUL
A(5s6)==DF1L=MLL

A(5:7)=0.

A(S5+B)=~-DF1L=NLL
A(6+1)=DM2UA2L=ALMEDEXP( =ALMEB 1)
A(G +2)==DM2=A2HALMEDEXP (ALMEB 1)
A(6+3)=~-DM24BTMEDEXP (-3 TMEB1)
A(6+4)=DM2EBTMIDE XP(BTMZB1)
A(6+5)==DF2L%*0QL%=MUL
Al6+6)=DF2L QL 2MUL

A(6+7)=0.

A(6+8)=DF2L=RL %NUL
A(T7+5)=DEXP(~-MLL=B2)
A(T7+6)=DEXP (MUL%BZ)
A(7»7)=DCOS{NUL%B2)
A(78)=DSIN(NUL=BZ)

A{T7+9)="1e

A(T7s10)==1.

A(B+5)==-QL=DEXP (=MUL%B2)
A(B+6)==0LEDEXP (MULEB2)
AlB7)==-RL=DCOS(NUL=B2)
A(B4B)==-RLEDSIN(NULEB2)
A(BW9)=A2

A(B»10) =A2

A(Besll)=-1.

AlBel2) ==
A(9+5)==DFILE=MUL=DEXP(=MUL=B2 )
A(9:+5)=DF IL==MUL:=DEXP{MUL%:B2)
A(9+7)==DF1LENUL=DSININUL=:B2)
A(9+8)=DF1L=NULZDCCS(NULZEB2)
A(D+Q)=DML:ALM

A(94+10) ==DM1:=:ALM

A{10+5) =DF2L%QLEMULEDEXP { =MUL %B2 )
A(10+6) ==-DF 2L QLEMULZDE XP(MUL B2 )
A(10+7)=CF2LERLSNULEDSININUL%B2)
A(10sB)=~DF 2L =FLENULEDCOS(NUL%B2)
A(10+9) =-DM2ZA2%ALM
A(10+s10)=DM2%:A2UALM
A(10s11)=DM2%BTM
A(10s12)==DM2%BTM

A(11+9) =DEXP(=ALM%YOD)
A(11+10)=DEXP(ALM%YD)
A(lls13)="1.

Alllesla)==1.

All2+s9) ==A2%DE XP( -ALMZ=YO0)
A(12+,10)==A2%DEXP (ALMZYOD)
A(l2+11 )=DEXP(=BTM%YOQ)
A(12+,12)=DEXP(BTM:YD)
A(l12s13)=A2

A(12,16)=A2

A{12s15)=-1.

All2s16)==1.

A(13:9) ==DMIALMEDEXP(~ALM%YO )
A(13,10)=DMI%=ALMEDEXP (ALM=YO)
A(13213)=DMI%ALM
A(13:14)=~DMLxALM
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A(lG:49) =A2=ALMZDE XP( =ALMZYO)
A(l4s10)=~A2%ALM=DEXP (ALM%YO)
All4s11)=-BTMEDEXP(~BTMZY0)
A{16,12)=BTMZDEXP (BTM&Y0)
A(l14s13)==A2%ALM

ACL14,14 )=A22ALW

A(14515)=BTHM

All4,16)=-BTM
A(15,13)=DEXP(=-ALMZB3)
A(15,14 ) =DEXP (ALM%B3)
A(15,17)==1.

A(15,1B)=-1.

A(15,19)=-1.

A{15+20)=0.
A(16513)==A2%DEXP ( ~ALM%B3)
A(16414 )1=-A2%=DEXP (ALMZB3)
A(16,15)=DEXP(-BTMZB3)
AC16+16)=DEXP(ETMZB3)

A(16417)=0R

A(16,18)=0R

A(164+19 )=RR

A(16,20)=0.
AC17+13)=-DM1%ALMZDEXP( ~ALM=B3)
A(17+14 )=DMIALMEDEXP (ALM%B3)
A(17,17)=DF IRENUR
A(17+18)=-DF1RZMUR

A(17+19)=0.

A(17,20)==DF1R%NUR
A(18,13)=DM2%A2+ALMEDEXP (-ALM%B3)
A(18,14)=-DM2%A2%ALMEDE XP{ALM%B3)
A(18,15)=-DM2%E TM%DE XP( ~BTM%B3)
A(1B+16)=DM2%BTMZDEXP (B TM%B3)
AC18417)=-DF2R$CR%*MUR

A(18, 18 )=DF 2REQRAMUR

A(1B4+19 )=0.

A(18,20)=DF 2R%RRENUR
A(19,17)=DEXP ( ~MUR%B4 )

AC19, 18 )=DE XP ( MUR%BS )

A(19, 19 )=DCOS ( NUREEBS )
A(19,20)=DSIN{NUREB4 )
A(19.21)=-1.

A(19,22)=-1.
A(20+17)==QREDEXP ( ~MURZB& )
A(20.18)=-QR%*DEXP (MUR%B4&)
Al20+19 ) =-RREDCOS (NUR%B 4 )

A(20,20 )==RR%DS IN (NURSB& )
A(20.21)=A2

A(20.,22 )=A2

A(20,23)=-1.

A(20s26)==1.

A(214+17)=-DF 1IR#MUR%DEXP ( ~MUR%B4)
A(21,18 )=DF 1R&MUR%DE XP ( MUR%B4 )
A(21,19 )==DF1RENURSDSIN (NUR%B 4 )
A(21+20)=DF IRENUREDCOS ( NUR%B4 )
A(21+21)=DMIZALM

A(21422 )==DMLZ=ALM

A(22,17 )=DF 2R#:QR=MURSDEXP{ ~MURSB 4 )
A(2241B)=~DF2R%0R&MURZDEXP (MUR%B 4 )
A(224+19 )=DF ZRARRENURADS IN ( NUR %84 )
A(229+20 ) ==DF 2R 2RR%NURZDCOS (NUR%B & )



241 A(22+21 )=~DM22 A2 ALM

242 A(22422 )=DM2ZA2TALM

25 3. A(22+23)=DM2%BTM

244, A(22.:24 )==DM2=BTM

245, A(23+21 )=DEXP(-ALM%BS5)

246. A(23.22)=DEXP( ALM=BS)

247, A(26442]1 )==A2=DEXP ( ~ALMEAS)

248. A(264422)=-A2%DEXP (ALMBS)

249, A(24423)=DEXP(=-BTM%BS5)

2%50. Al24+24 )=DEXP(BTM=B5)

251. [ THESE ELEMENTS OF A HAVE DIFFERENT VALUES DEPENDING ON THE
252 [ SIGN OF NU2L

25 3. IF (NU2L.LT.0.) GO TO 30

254. A(3.8)==1.

255. A(4,.,8)=PL

256. A(S5+7)=DFIL%NUL

257 A(6.7)==DF2L&=RLENUL

258. A(T7+7)=DEXP(=NUL=EZ2)

259. A({T7+8)=DEXP(NUL%BZ)

260. A(B+7)==RL=DEXP (=NUL=B2)

261. A(8+8)==RLEDEXP (NUL:B2)

262. A(9+7)==DF ILENUL%DEXP (=NUL%B2)

26 3. A(9.:.8)=DFIL=NULZDEXP(NUL%=B2)

264. A(10+7)=DFZ2L=RLENULZDEXP(-NUL=B2)

265. A(10sB) ==DF 2ZL%RLH=NULZDEXP (NUL%B2)

266. IF (NU2R.LT.0.) GO TO 30

267 A(15.,20)==1.

268. A(16,20 )=RR

269. A(17+19)=DF 1IRENUR

270. A(18+s19)=-DF2R2ZRR*=NUR

271 A(19:19)=DEXP(-NUR%=B4)

272 A(19+20 )=DEXP(NUR=B&)

273. Al{20+19 )==-RREDEXP (~NUR%B®&)

2T4. A(20+20)=-RR=DEXP (NUR%B&)

275. A(21+19)==DF IRZNURZDEXP ( “NURZB4)

276 A(21,20 )=DF IR%=NUR:DEXP {NUR%E4 )

277 A(22+19 )=DF 2R=RRE=NURXDE XP( -NUR%:B & )

278 A(22+20 ) =~DF2R2RRENURSDEXP (NUR®B 4 )

279 C THE LIBRARY SUEROUTINE LINV3F IS CALLED TO SOLVE FOR X IN A=X=8B
280. 30 CALL LINV3F (A,Bs1JOBsN+I1A+D1.:D2:sWKAREAJIER)

281. C THESE STEPS CALCULATE THE GREENS FUNCTIONS FOR EACH MDDE-
282. C THE VALUE CF Y DETERMINES WHICH EGQUATION IS TO BE USED.
283. IF (IER.EQ.130) GO TO 25

28B4, IF (Y.GT.B1) GO TO 60

285, Y2K1=B(3)=DEXP (~BTM:Y )+B(&4)ZDEXP(BTM=Y)=A2:(B(1)2DEXP(~ALMEY)
286. E+B(2)SDEXP(ALMZY))

287 YB=Y2<1

288. GO0 TD 69

289. 60 CONTINVE

290. BB=Bl1+B2

291. IF (Y.GT.BB) GC TO 61

292. Y3=Y-(BB-B2)

293. IF (NU2L.LT.0.) GO TO 6%

294. Y2K2==QL=(B(5)ZPEXP{=MULZY3)+B(6)*DEXP (MUL%*Y3))~RL%(B(7)%DEXD
295, E(=NULEY 3)+B(8) ZDEXPI(NUL%Y3))

296. YB=yv2K2

297. GO TD 69

298, 65 CONTINUE

299. Y2K2==QL%=(B(5)2DEXP( ~MULSY3)+B(6)*DEXP(MUL®=Y3) ) =RL&H(B(7)%DCOS

300. E(NULZY3 )+B(B)SDSINI(NULZ:Y3))



301.
302.
303.
304.
305.
306.
307
308.
309.
310.
311.
312.
31 3.
314.
315.
316
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327
328B.
32%.
330.
331.
332.
333.
I34.
335.
336.
337.
338.
339.
34 0.
341,
342
343.
366,
345.
346.
347.
348,
349.
350,
351.
352.
353.
354 .
355.
356.
357
358.
359.
360.

61

62

63

66

€4

69

20

51
50

55

70
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YB=Y2K2

GO TO 69

CONTINUE

BB=BB*+Y 0

IF (Y.GT.BB) GC TO 62

Y3=Y=-(BB=-Y0)

Y2K3=3( 11)DEXP(-BTM:Y3)+B(12)+DEXP(BTMiY3 ) =A2=(B(9)%4DEXP
E(=ALMEZY3)+B (10 )ZDEXP(ALM=:Y3))

YB=Y2K3

GO TD 69

CONTINUE

BB=BB+B 3

IF (Y«GT.BB) GC TO 63

Y3=Y-(BB~-B3)

Y2K4=3( 15)%DEXP(=BTMXY3)+B (16 }DEXP (BTMY3)=A2::(B (13)#DEXP
E(=ALMEY 3)4B (14 )%DEXP(ALM=Y3))

YB=Y2K4

GO TD 69

CONTINUE

BB=B3+B 4

IF (Y.GT.BB) GC TO 66

Y3=Y-(BB-B4)

IF (NUZ2R.LT.0.) GO TO 66

Y2K5==QR%=(B(17)4DEXP(=MUR%Y3)+B(18)=DEXP(MUR%Y3))-RR%(B(19)
EXDEXP(=NUR:=:Y3)4B(20)=DEXP (NUR=Y3))

¥YB=Y2K5

GD TD 69

CONTINUVE

Y2K5==QR*=(B(17)4DEXP( ~MUR%Y3) +B(1B):=DEXP(MUR%:Y3))~-RR%:(B(19)
EXDCOSINURZ:Y3)+4B(20)%=DSINI(NUR%Y3))

YB=Y2K5

GO TD 69

CONTINUE

Y3=Y-BB

Y2K6=3( 23):DEXP(-BTM%Y3 )+B (24 }ZDEXP (BTM%Y 3 ) =-A2:%:(B (21 ):=:DEXP
E(=ALMEY 3)+B (22 ) =DEXP(ALME:Y3))

YB=Y2K6

CONTINUE

G1=G(L)

ALL THE GREENS FUNCTIONS ARE SUMMED AT EACH Y

GI(L)=2 /A1=DSINI(BK%X0)%DSINIBK=:X1)5:=YB+G(L)

CONTINUE

IF (YeLT-(B1+B2)«0OReY.GT.(B14B2+B3+Y0)) GO TO 51

THE SUBROUTINE CENT IS CALLED WHEN Y IS IN THE

CENTRAL GRAPHITE REGION

CALL CENT{(GsL+»Y:IERsYO)

IF (IER.EQ.130) GD TO 25

Y=Y+STEP

CONTINUVE

THESE STEPS PRINT AND PLOT THE RESULTS= ADDITIONAL STEPS MAY

BE ADDED HERE WHICH PUNCH

Y=0.

DO 70 I=1.Y1

WRITE (655) YG(I)

FORMAT (* Y= " F6.2s" GREENS FUNCTION= *4D12.5)

Y=Y#5TEP

G3(I)=ALOG10(G(I))

CONTINUE

CALL GRAPH (61 sXsGI91141510.0+-840015:4000405320s-3.0,
E*Ye CMe 3"+ "GREENS FUNCTIONS:® o "GFP24PLi®s *X=CENTER:")



361.
362.
363.
364.
365
366.
367,
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379
380.
381.
382.
383.
3B4.
385.
386.
387.
388.
389.
390
391.
392.
393.
394,
395.
396.
397.
398.
399.
400.
401.
402
403.
404
405.
406.
407,
408.
409.
410.
411,
G412
413.
414.
415
416
417.
418.
419.
420.

25
26
i

76

5 130

GO T2 27

WRITE (6+26) KL

FORMAT (* K= *,312+" L= *",12)

STOP

END

SUBROUT INE CENT(GsLsYsIERsYO)

THIS SUBROUTINE IS USED TO ADD 7 MORE MODES TO THE GREENS
FUNCTION WHEN Y IS5 IN THE CENTRAL GRAPHITE REGION

DOUBLE PRECISICN PI+SIGAOMsAl +B1:+B2+B3+Y0sSRMeAZHE

DOUBLE PRECISICN BK+SAMsDM1+DM2+DEXP+DSQRT»BZ

DOUBLE PRECISICON BTMsBT2MsALMsALZMsSTEP#2Z

DOUBLE PRECISION Y3¢X0sYsBBoYBoX1+G1leY2KIY2K4

REAL A(B8+B)+B(8B) .WKAREA(T700)+sD1sD2+DET+G(100)

INTEGER IsJeKsL sMsNasIAs IDGTHIER»IJOBsPsY1

PI=3.141592654

SIGAOM=0.00030€61

DM1=1.152864

DM2=0.991810C

SAM=0.5326368D-07

SRM=0.00287363

B3=22.65

B2=16.11

B1=32.36

2=6B.32 755

Al=111.7¢€0

X0=55.88

X1=55.88

BZ=(P1/Z)%%2.

1J0B=2

DO 75 K=14,21

BEK=(K&P I/AL)%%2,

BT2M=BK + (SIGAOM/DM2) +BZ

BTM=DSQRT(BT2M)

AL2M=BK + (SAM+SRM) /DM1+BZ

ALM=DSORT(ALZ2M)

AZ2=(5RM /DM2 )/ ( AL2VM=BT2M)

N=8B

IA=8

DD 76 I=1.8

Bl(I)=0.

DO 77 J=1.8

AlI»J)=0.

CONTINUE

CONTINUE

Bl(6)=1.

A(ls1)=1.

Alls2)=1.

A(2s1)==A2

A(2+2)==A2

A(2.,3)=1.

Al2s8)=1.

A(3»1)=DEXP(=ALM%YOD)

A{3+2)=DEXP(ALWM:YOD)

A(3,s3)==-1.

A(3s8)==1,

AlG 21 )==A2=DEXP(=ALMZYD)

Alh o2)=~A2EHDEXP (ALMZYOD)

Al4+3)=DEXP (=B TM%YO)

AlG,,4)=DEXP(BTWVZYD)

AlG5)=A2



421.
422.
423,
424,
425.
426.
427.
428.
429.
430.
431.
432.
433.
434,
435,
436
437.
438.
439,
440,
G4l
442,
443,
444,
445,
446,
447
448,
449.
450.
451.
452.
453.
454,
455,
456.
457.
458.
459,
460
461.
462.
463.
464,
465.
466
467
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Al4,6)=A2
AlGoT)="1.
Al(GB)==-1.
A(5 41 )==DM1LALMIDEXP (=ALMZEYO)
A(5+2)=DMI=ALMEDE XP(ALM:E:YO)
A{S5+5)=DM1=ALM
A(54+6)==-DM1:=:AL M
A(6+1)=A2%ALMEDEXP (=ALM::Y0)
A(6+2)==A2%ALMEDEXP(ALMIEYO )
A(6 +3)==BTMZDEXP( =BTM&YO0)
A(644)=BTM=DEXP(BTMEYOD)
A(64+5)==A2::ALM
A(6+6)=A2:ALM
A(G+T)=BTM
A(6.B)=-BTM
A(T7+5)=DEXP(~ALNZ:B2)
A(7+5)=DEXP (ALM:B3)
A(B +5)==A2=DEXF(~-ALM%B3)
A(Beb)==A2:DEXP (ALM:B3)
A(B»7) =DEXP (=B TWM::B3)
A(B8)=DEXP(BTVZB3)
CALL LINV3F (A+BeI1JOBsN»IA+D1+D2+.WKAREAWIER)
IF (IER.EQ.130) GO TO 85
BB=Bl1+B2+Y0
IF (Y.GT.BB) GO TO 72
¥Y3=Y¥=-(BB-Y0)
Y2K3=3 (3 )=DEXP(=BTM=:Y3) +B(4)=DEXP(BTM=Y3) =A2%=(B(1)=DEXP
E(~ALMEY 3)+B(2) tDEXP(ALM=Y3))
YB=Y2K3
GO TD 73
72 BB=BB+B 3
Y3=Y¥-(BB-B3)
Y2K4=3( 7)=:DEXP (=B TMZ:Y3) +B (B )=DEXP (BTM=:Y3) ~A2%:(B(5)=DEXP
E(=ALMZY 3)+B (6 ) YDEXP(ALMZY3))

YB=Y2Ka
73 CONTINVE
GIL)=2. /A1%=DSIN(BKZEX0)=DSINIBK=X 1 ):YB+GIL)
75 CONTINUE
GO T2 87
85 WRITE (6.86) KL
86 FORMAT (* IN THE SUBROUTINE CENT IER=130 AT K= *412,* L=',12)
a7 RETURN
END

//G0.5YSIN DD =

//G0.FT14F001 DD DSNAMESESM+UNIT=SCRTCHDISP=(NEWsPASS),

// SPACE=(800,(120+15))+DCB=(RECFM=VBS.,LRECL=796,8BLKS]IZE=800)
//SMPLTTR EXEC PLOT.PLOTTER=PRINTER



28.
29
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
4.
42
4 3.
44,
45.
46
47
48.
49,
50.
Sl.
52.
53.
54
58,
56
57.
58.
59.
60.

//C300 JOB

//STEP1 EXEC

//FDORT.SYSIN

U3780s W JH
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FORTGCG+REGION=320Ks TIME=1,+L1IB="SYS1.IMSL.DOUBLE"

DD %

C THIS PROGRAM 1S GFP25PL-IT CALCS. DEL G/DEL YO FCOR 2 GROUFS
C THE PROGRAM WILL

DOUBLE
DOUBLE
pouBL =
pouBLE
DOUBLE
DOUBLE
DOUBLZ
DOUBLEZ
DOUBLE

PRECISICN
PRECISION
PRECISICN
PRECISICN
PRECISICN
PRECISICN
PRECISICN
PRECISICN
PRECISICN

ALSD PLOT OR PUNCH THE RESULTS
PleSIGAOMSIGAFL+DF1ILsCF2L Al sB1+B2+B3+B4+B5
YOsSRM e SRFL» SFL e SFReNULsMUL2A2,QLsRLINUZL MUZL
BTFL +BT2FL+BK+sSAMe SAFL«DM1+DM2,BETA

DEXP sDSURT oF ISL oBZ+DADBS, DSINLDLNS
BTMsBT2MsALFL sAFLesALMsAL2MsSTEP+Z+STEP1
SIGAFRDF IR+DF2R+SAFR+SRFRsBT2FRBTFR
ALFR+AFRsF ISR+ MUZR+MURsNUZ2RsNUR+GR+RR

Y2K1 +Y2K2+Y2K3,Y2K4,Y2K5,Y2KE
Y3eX0eYeBBsYB+X1+G1(100)-G2(100)

REAL A(24+24)+E(24)sWKAREA(T00)+D1+D2,X(100)»G(100)
TedsKelLsMshs IA: IDGT+IERs 1JOBsP Y1
PI=3.141592654

INTEGER

C THE SE

0.05540¢
0.055T71%

DF1L=1.421447
DF1R=1.6421447

DF2L=0.

231576

DF2R=0.231576
DM1=1.152864

DM2=0.991810
BETA=0. 0065

SAFL=0. 002076
SAFR=0.002082
SAM=0.5326368D~07
SFL=D0.08233
SFR=0.08397

SRFL=0.

03364

SRFR=0.03447
/SRM=0.00287363

B5=32.36
Ba=15.11
B3=22.65
B2=-16.11
Bl1=32.36
ZI=68.32755

Yi=2

Al=111.760
C STEP 1S THE SIZE OF DEL YO

STEP=1.28/100.

Y0=22.65

C STEP1

STEPL1=142.24/6C.
X0=55.88
X1=55.88
BZ=(PI/Z )22

1JDB=2
N=2¢4
IA=24

ARE THE TWO GROUP PARAMETERS FOR EACH FUEL REGION
SIGAOM=0.00030¢€61

SIGAFL=
SIGAFR=

IS THE NUMBER OF POINTS IN THE Y DIRECTION

C THIS LOOP LOADS VALUES OF DEL G INTO Gl OR G2
DO S0 L=1.,¥1

Y=0.0

IF (L.EG.1) GO 70 52
Y0=22.65+4STEP



61,
62.
63.
64
65.
66 .
67.
68.
69.
70.
71
72.
73.
T4.
75.
76
TTe
T78.
79
80.
8le
82.
83.
B4,
85.
86.
87.
88.
B9.
90.
91.
92.
93.
4.
95.
96.
97«
98.
99
100.
101.
102
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

n

11
10

40
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THIS 3EGINS THE MAIN LDOP FOR MOVING ACROSS THE CORE. Y DIRECTION
DO 51 M=1.+61
X(M)=Y
G(M)=0.
THE LIBRARY SUBROUTINE WILL NOT CONVERGE FOR K>13 FOR THIS MATRIX
DO 20 K=isl13
ALL SELEMENTS OF A & B ARE SET=0. FDOR EACH MODE
DO 10 I=1.+24
B(I)=0.
DO 11 J=1+24
A(I+J)=0.
CONTINUE
CONTINUE
B(l14)=1.
D1=0.
THESE STEPS CALCULATE THE NEW SOLUTION EQUATION PARAMETERS
FOR EACH MCLE
BK=(K%#P I/A1 }%:%2.,
BT2M=3K +(SIGAOM/DM2) +BZ
BTM=DSQRTI(BT2M)
BT2FL=BK+(SIGAFL/DF2L)*+BZ
BT2FR=BK+(SIGAFR/DF2R)+B2Z
BTFL=DSGRTI(BT2FL)
BTFR=DSQRT(BT2FR)
AL2M=BK + (SAM+SRM) /DM1+B2Z
ALM=DSQRT(ALZM)
AFL=BK+ (SAFL+SRKRFL )/DF1L+BZ
AFR=BK+ (SAFR+SRFR ) /DF IR+8B2Z
ALFL=DSGQRT(AFL)
ALFR=DSQRT(AFR)
A2=(SRM /DM2)/ ( AL2M-BT2M)
FISL=((1.-BETA)ASFL%SRFL)/(DF1L%=DF2L)
FISR=(( 1.-BETA)*SFR&SRFR)/(DF 1R%=DF2R)
MUZ2L=(AFL+BT2FL )/Z.+DSQRT((AFL+BT2FL )%%2. =4%(BT2FL%AFL-FISL)) /2.
MU2R=(AFR+BT2FR)/2.+DSART((AFR+BT2FR)%%2.-4%=(BT2FR:AFR~-FISR)) /2.
MUL =DS50RT(MUZL )
MUR=DSQRTI(MUZ2R )
NU2L=(AFL+BT2FL)/2.-DSGRT((AFL+BT2FL )%%2..~4=(BT2FL=AFL=-FISL)) /2.
NUZR=(AFR+BT2FR)/2 «~DSORT((AFR+BT2FR )%%2.-4%=(BT2FRT=AFR=FISR)) /2.
NUL=DSQRT(DABS (NU2L))
NUR=DSQRT(DABS (NUZR))
QL=(S5RFL/DF2L)/(MU2L=-BT2FL)
QR=(S5FR/DF2R) / (MU2R-BT 2FR)
RL==(SRFL/DF2L )/ (NU2L+BT2FL)
RR==(SRFR/DF2R)/(NU2R+BT2FR)
IF (NU2L.LT.0.) GO TOD 40
RL=(S3FL/DF2L) /(NU2L=-BT2FL)
IF (NJ2R.LT.0.) GO TO &1
RR=(SRFR/DF 2R )/ (NU2R-BT2FR)
MATRIX A IS LOADED MERE
Alls1)=1.
Alls2)=1.
A(2:3)=1.
Al2s+8)=1.
A(3+1)=DEXP(~ALM=B1)
A(3.,2)=DEXP(ALM=B1)
A(3+5)=~1.
A(3s5)=~1.
Al3s7T)="=1.
A(3+8)=0.
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121. AlG 1) ==-A2L=DEXP (-ALMZB1)

122. AlG 42)==A2=DEXP(ALM:B1)

123. A4 +3)=DEXP(-BTM=BI1)

124. Al4 +4)=DEXP(BTMZB1)

125. A{4+5)=QL

126. Al4+5)=GL

127. AlGsT)I=RL

128. Al4.+,B)=0.

129. A(54+1)=~DMLZ=ALMEDEXP( ~ALM=B1)
130. A(S542)=DMITALMZDEXP(ALM=B1)
131. A(5+5)=DF1L=MUL

132. A(5+6)==DF1L%=MUL

133. A(5+7T)=0.

134. A(5,8)==DF1L%:NLL

135. A(Bs1) =DM2HA2LALMUEDEXP( ~ALMEB 1)
136. A(6+2)=~-DM2ZA22ALMIDEXP (ALMB 1)
137. A(6 +3)=-DM2ZEBTMIDEXP({ =B TMxB1)
138. A(644)=DM2:BTMZDEXP(BTM=B1)
139. A(6+5) ==DF 2L=QLEMUL

140. A(6,+6)=DF2L=QLSMUL

141. A(6¢7)=0.

142. A(€+8)=DF2L #RL *NUL

143. A(T+5)=DEXP (-MUL%B2)

144, A(T+6)=DEXP(MUL=BZ2)

145. A(T+7)=DCOS (NUL%B2)

146. A(T+B)=DSIN(NULZBZ)

147. A(T»9)="1.

148. A(T+10)=-1.

149. A(B+5)==QL=DEXF (~MUL=B2)

150. A(B6)==-QLEDEXP(MUL%B2)

151« A(B+7)=~-RLEDCOS(NUL=B2)

152. A(B+8)==-RL=DSINI(NULEBZ2)

153. A(B+9)=A2

154. A(B.10)=AZ

155. AfB.11)==1.

156. A(Bs12)==-1.

157. A(9+5)=-DF ILEMUL%DEXP (-MUL %B2)
158. A(9+5)=DFIL=MULZDEXP (MUL=B2)
159. A(9+7)=-DFILENLL=DSIN(NULZB2)
160. A(9,8)=DFIL=NUL%DCOSI(NUL%*B2)
161. A(9+9) =DM1:ALM

162. A(9+10) ==DM1:=ALM

163. A(10+5)=DF2L*QLEMUL%DEXP( =MUL B2 )
1664 . A(10+,6)=-DF 2L%=QL==MUL=DEXP ({MUL B2 )
165. A(10s7) =DF2LZ=RLENULZEDSININULEB2)
166. A(10s8) ==DF 2LE=RLE=NULEDCOS(NUL %B2)
167. A(10+s9)==DM2=A2SALM

168. A(10¢10 )=DM2%:A25ALM

169. A(10+11)=DM2EBTM

170. A(l10elZ2)==DM2:BTM

171. A(11+9) =DEXP(=ALM%:YO)

172. A{11+10)=DEXP(ALM=:YD)

173. Al1l,13)=~1.

174. Alllelé)=~1.

175. A(12+9) ==A2%DE XP( ~ALM%YO)

176. A(12+s10)==A2%=DEXP (ALMZYO)

177 A(12+11)=DEXP(~BTMZYOD)

178. A(12+12)Y=DEXP(BTM%Y0)

179. A(12,13)=A2

180. Al12s14)=A2
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181. A(l12s15)="1.

182. A(12+16)="1.

183, A(13,9) =-DM1:ALMEDEXP (= ALMY0)
184. A(13410)=DM1%:ALMEDEXP (ALM=:YO)
185. A(13,13)=DMI=ALM

186. A(13s14 )==-DM1::ALM

187. A(1449) =A2HALMEDEXP(=ALMEYO)
188. A(l4s10)==A2%=ALNEDEXP (ALM=:YO)
189. A(14+11)==BTM::CEXP(=BTM=YOD)
190. A(l4s12)=BTMZDEXP(BTM=YO0)

191. A(l4s13)=-A2:ALM

192. A(lGs16)=A23ALM

193. A(14,15)=BTM

194, A(l4,16)==BTM

195. A(15+:13)=DEXP(=ALM=:B3)

196. A(15:14)=DEXP(ALM=B3)

197. All15,17)="=1.

198. A(15+18)=-1.

199, A(15+19)==1.

200. A(15+20)=0.

201, A(16+13)==A2=DEXP(-ALM%B3)

202. A{16s14)=-A2FDEXP (ALM=:B3)

203. A(16+15)=DEXP(=BTM%B3)

204. A(16+16)=DEXP(BTM%:B]3)

205. A(16+17)=QR

206. A(16,18)=QR

207. A(16+19 )=RR

208. A(16+20)=0.

209. A(17s13)==DM1=ALMZDEXP( ~ALM=B3)
210. A(17el64 )=DM1ISALMEDEXP (ALM=B3)
211l A(17+17)=DF IR%=VNUR

212. A(17+18)==DF1P=%MUR

213. Al17+19)=0.

214, A(17+20)=-DFIRZNUR

215. A(18s 13 )=DM2UA2LALMEDEXP(=ALMZB])
216. A(184+16)==-DM2::A2:ALMZEDE XP{ALM=B3 )
217. A(18,15)==DM2%ETMXDEXP( =B TM%B 3)
218. A(1Be16)=DM2%B TMADEXP(BTM::B3)
219. A{1Bs17)==DF2RZQR%*MUR

220. A{1Bs1B)=DF 2RZ=CR*MUR

221. A(1B+19)=0.

222. A{1R,20)=DF 2R%=RR=NUR

223. A(19+17)=DEXP(=-MUR=B4%)

224. A(19,18)=DEXP(VMUR=B4 )

225 A(19¢19 )=DCOS ( NUR::ES )

226, A(19+20 )=DS IN(NUR=B4)

227. All19s21)==1.

228. A(19+22)="1,

229. A(20+17)==QR=DEXP({ =MUR%B4 )

230. A{20+18)==-QREDEXP (MUR*B &)

231. Al(20+419)=~RR%DCOS (NUR%B4 )

232. A(20+20)=-RREDSIN(NUR=B&)

233. A(20s21)=A2

234, A(20s22 )=A2

235. Al(20+23)=-1.

236. A(20s26)=-1.

237. A(21+17)==DF IR4MURZDEXP (-MUR%B4)
238. A(21+18)=DF IR=MUR=DE XP (MUR%B4 )
239. A(21+19)==DF1R:NUR%DS IN(NUR%B &)

240 A(2120 ) =DF IR%NURZDCOS( NUR%BS )
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Al21s21 )=DM1>ALM

A(21s22 )==DML1=ALM

A(22s17 )=DF 2RH=QR%MURZDE XP ( =MUR%B 4 )
A(22+1B)=-DF2R%*QR*=MURZDEXP (MUR=34 )

A(22+19 )=DF 2ZRE=FRRENURZDS IN(NUR%B4G )
A(22+20)==DF2R%*RR*=NUR=DCOS(NUR=B &)

Al(22¢21)==DM2%:A2ALM

A(22+22)=DM2RAZHALM

A(22+,23)=DM22BTM

A(22+,264 )==DM2SBTM

A(23,21 )=DEXP( =ALM=%BS)

A(23+,22 )=DEXP(ALM=:BS)

A(26421 )==A2%DEXP( =ALM%B5)

A(26422 )==A2FDEXP (ALMEB5)

A(24+23 )=DEXP(=BTM=BS5)

A(24,24 ) =DEXP(ETM2BES)

THESE ELEMENTS ARE DIFFERENT DUE TO THE DIFFERENT SOLUTIONS

T) THE DIFFERENTIAL EQUATIONS DEPENDING ON THE SIGN OF NUZ2L

IF (NU2L.LT.0.) GO TO 30

A(3,8)=~1.

Al4.B)=RL

A(S5.7)=DFI1L SNUL

A(6+7)==DF2LE=RLENUL

A(T7+7)=DEXP (=NULZE2)

A(7.8)=DEXP(NULZB2)

A(B»7)==-RLE=DEXP(=NUL%BZ)

A(B+8)=-RLSDEXP(NUL:B2)

A(9,7)==DF ILENULZDEXP (-NUL%BE2)

A(9+8)=DFIL=NUL=DEXP (NUL:B2)
A(10+7)=DF2LERLUNULZDEXP(=NUL%B2)

A(10+8) ==DF 2L =RL #NUL =DE XP { NUL =B2 )

IF (NU2R.LT.0.) GO TO 30

A(15+,20)=-1.

Al{16+20)=RR

A(17+19)=DF IR%=NUR

A(18B419)=-DF2R2RR:NUR

A(19+19)=DEXP( ~NUR%B4)

A(19,20 )=DEXP(NUR%:B4&)

A(20+19)=-RRE=DE XP ( ~NUR%B4& )

A(20+20)=~RRZ=DEXP (NUR%*B#& )

A(21419)==DF1R%NURZDE XP ( ~NUR%B4 )

A(21+20)=DF IRENURZDEXP(NURZB4 )

A(22+19)=DF 2RZRRENURGDEXP ( =NUR%B4 )
A(22+20)=-DF2R*RR=NURZDEXP (NUR=B4)

THE LIBRARY SUEROUTINE LINV3F SDLVES FOR X IN A%X=B

CALL LINV3F (A+BsI1JOBsN+IAWD] +D2+WKAREAWIER)

THESE STEPS DETERMINE WHICH SOLUTION EQUATION IS APPROPIATE FOR

THE CURRENT VALUE OF Y AND CALCULATE THE GREENS FUNCTIONS

IF (JER.EQ.130) GO TOD 25

IF (Y.GT.B1l) GO TO 60

Y2K1=3( 3 )=DEXP (~BTMEY ) +B(4)DEXP (BTM&Y ) ~A2%(B(1)=DEXP( ~ALM&Y)
E+B(2)SDEXP(ALM%LY))

YB=Y2K1

GO TO 69

CONTINUE

BB=B1+8 2

IF (Y«.GT.BB) GO TO 61

¥Y3=Y-(BB-B2)

IF (NU2L.LT.0.) GO TO 65
Y2K2==QL2(B(S5)ZDEXP(~MULSY3)+B(6)SDEXP (MULZY3) ) ~RLE(B(7)SDEXP
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E(=-NUL&Y3)+B(B)XDEXPINUL:=:Y3))

YB=Y2K2

GO TD 69

CONTINUE

Y2K2==QL%(B(5)%DEXP(~MUL%Y3)+B(6)=DEXP(MUL:Y3) ) =RL%(B(T7)%DCOS
E(NUL%Y3)+B(B)%xDSIN(NUL%Y3))

YB=Y2K2

GO T0 69

CONTINUE

BB=B3*+YO

IF (YGT.BB) GC TOD 62

Y3=¥=-(BEB=Y0)

Y2K3=3( 1 1)%DEXP(~BTMXY3)+B (12 ):=:DEXP(BTMX:Y3)-A2% (B (9)=:DEXP
E(-ALM:YII+B (10 )IXDEXP (ALM=Y3))

YB=Y2K3

GO TD 69

CONTINUE

B8B=BB+B 3

IF (Y.GT.BB) GC TG 63

Y3=Y-(BE-B3)

Y2K4=3( 15)SDEXP(~BTM:Y3)+B (16 )#DEXP(BTM:Y3 ) -A2::(B(13)=DEXP
E(=ALM2Y3)4B (14 )4DEXP (ALMEY3))

YB=Y2K4

GO TO 69

CONTINUE

BB=BB+B 4

IF (Y.GT.BB) GC TO 64

Y3=Y-(8B-B4)

IF (NU2R.LT.0.) GO TO 66

Y2K5==QR%(B (17 )*DEXP(~MUR#*Y3) +B( 18):=DEXP(MUR:Y3) ) =“RR%=(B(19)
E=DEXP(-NUR::Y3)+B(20)ZDEXP(NUR%Y3))

¥YB=Y2K5

GO TD 69

CONTINUE

Y2KS5==QR%={B(17)=DEXP(~MUR%:Y3) 4B( 18)xDEXP(MUR%=Y3))=RR=(B(19)
E4DCOSC(NUR%RY3)+B(20)*DSIN(NUREY3) )

YB=Y2K5

GO TD 69

CONTINUE

Y3=Y-38

Y2K6=3( 23)+DEXP(-BTMx:Y3)+B( 24 )4DEXP (BTM:Y3 ) ~A2=(B(21)%=DEXP
E{=ALM&Y 3)4B (22 )+=DEXP(ALMEY3))

YB=Y2K56

CONTINUE

G(M)=2,/A1%DSIN(BK%:X0 ) =DSINIBKEX1)EYB+G(M)

CONTINUE

IF (YL To(B1+B2).0RY.GT.(B1+B2+B3+Y0)) GO TO 53

THE SUBROUTINE CENT IS CALLED IF Y IS IN THE CENTRAL GRAPHITE

REGION TO FURTHER CONVERGE THE SOLUTIONS

CALL CENTI(GsMsY+IERsYQ)

IF (IER-EQ.130) GO TO 25

IF (L.EQ.2) GO TO &4

Gl(M)=G (M)

G2({M)=G (M)

Y=Y+STEP1

CONTINUE

CONTINUE

DEL G/DEL YO IS CALCULATED HERE. ADDITIONAL STEPS MAY BE

INSERTED HERE TO GENERATE PLOTS OR TO PUNCH CARDS
DO 70 I=1.61
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G(I)=(G2(I)-G1(I))/STEP

WRITE (6+55) G(I)

FORMAT (El12.5)

CONTINUE

GO TO 27

WRITE (6.26) Kl

FORMAT (" K= "412s% L= "»12)

STOP

END

SUBROUT INE CENT(G+MsY»IERYC)

THIS SUBROUTINE ADDS 7 EXTRA MODES TO THE CALCULATION
FOR THE CENTRAL GRAPHITE REGION

DOUBLE PRECISION PIsSIGAOMsAl «B1,B2,83+Y0+sSRMsA2,E

DOUBLE PRECISICN BKsSAM:DM1+DM2,DEXP.DSGRT»BZ

DOUBLE PRECISICN BTM+sBT2Ms ALM s AL2MsSTEPs2Z

DOUBLE PRECISION Y3sX0s YsBBoYBeX1+G(100)sY2K3I»Y2K4

REAL A(8+8)+B(B)sWKAREA(TO00)sD1.sD2

INTEGER IsJeKsLsMsNeIAs IDGT+IER»IJOBP,sY1

PI=3.161592654

SIGAOM=0.00030661

DM1=1.152864

DM2=0.9 91810

SAM=0.5326368D-07

SRM=0.0028T7263

B3=22.65

B2=16.11

B1=32.36

ZI=68.32755

Al=111.760

X0=55.88

X1=55.88

BZ=(PI1/Z)%%2,

1JoB=2

THE LIBRARY SUBROUTINE WILL NOT CONVERGE FOR K>21 FOR THIS MATRIX

DO 75 K=14.,21

BK=(K&P I/AL1)%%2.

BT2M=BK + (SIGAOM/DM2)+B2Z

BTM=DSQRT(BT2Z2M)

ALZ2M=BK + (SAM+SRM) /DM1+4B Z

ALM=D5QRT(AL2M)

A2= (SRM /DM2)/( ALZM=BT2M)

N=8

IA=8

DO 76 1=1.8

B(I)=0.

DO 77 J=1.8

A(Ied)=0.

CONTINUE

CONTINUE

B(6)=1.

Allsl1)=1.

Alls2)=1.

A(2+1)==A2

Al2,2)=~-A2

Al2+3)=1.

Al2s4)=1.

A(3+1)=DEXP(~ALM%YOD)

A(3+2)=DEXP (ALMZYOD)

A(3e3)==1.

A(3s4)==1.
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Al4 o1 )= -A2UDEXF (-ALM%YD)

A(L o2)==A2%=DEXP (ALMEYOQ)

A(G +3)=DEXP(=BTN%:YO)

A(4 +4)=DEXP(BTMZYOD)

AlG5)=A2

Al4+6)1=A2

AlG+7)=~1.

Al4+B)==-1,.

A(5+1)==DM1=ALMZDEXP ( ~ALM:YOQ)

A(S5+2)=DMI=ALMZDEXP(ALMZYOD)

A(5+5)=DMIZALM

A{546)=~DM1%ALM

A(B+1)= A2HALMZDEXP (~ALM=%YO)

A(6 +2)==A2%ALMZDEXP(ALMZEYO )

A(6+3)=~BTMXHDEXP( -BTM%YO0)

A(6+4)=BTMZDEXP(BTMEYO)

A(G6+5)==A2%ALM

AlG+6) = A2FALM

AlB+7)=BTM

A(6+8)=~-BTM

A(T7+5)=DEXP(~ALMZ:B3)

A(T7+6)=DEXP(ALV2B3)

A(B+5)==~A2=DEXP(-ALMXB3)

A(B +6)==-A2%DEXF (ALMXB3)

A(B+7)=DEXP (=B TME3)

A(B+B)=DEXP(BTM%B3)

CALL LINV3F (A+sBelJOBsNsIA+D1+D2WKAREALIER)

IF (IER .EQ.130) GO TO 85

BB=Bl1+B2+Y0

IF (Y«GT.BB) GO TC 72

Y3=y=-(B8B-Y0)

Y2K3=83( 3 )HDEXP (~BTMXY3 ) +B(4 )SDEXP (BTM::Y3) =A2%(B (1 )=DEXP
E(=ALMEY 3)+B(2) *DEXP(ALMZEY3))

YB=Y2K3

GO 7O 73

BB=BB+B 3

Y3=¥=-(3B-B3)

YZ2K4=B( 7)LDEXP (~BTM&:Y3) +B(B)XDEXP(BTM:Y3) ~A2%:(B (5)%DEXP
E(=ALMEY 3)+B (6) *DEXP(ALM:Y3))

YB=Y2K4

CONTINUE

G(M)=2 4 /A1%DSIN(BKEX0)&DSIN(BK=X1)=YB+G(M)

CONTINUE

GO TO B7

WRITE (6.,86) KL

FORMAT (* IN THE SUBROUTINE CENT IER=130 AT K= "4I2," L=",12)

RETURN
END

//G0.SYSIN DD =
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GFP-27 calculates the thermal fluxes, ¢2.
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EXEC
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WATF IVsREGION= 192K L IB="SYS2 .WATF IV.IMSL .DOUBLE"
//G0.SYSIN DD =

*WJh*, TIME=5,PAGES=10
THIS PROGRAM IS GFP27PL-IT CALCS./PLOTS FLUXES FOR 2 GROUPS

PRECISICON
PRECISION
PRECISICN
PRECISICN
PRECISION
PRECISION
PRECISION

PI+SIGAOMSIGAFLWDF ILsDF2LeA1+B1+B2+B3+B4+BS5
YOsSRMesSRFLeSFLeSFR.NULsMULsAZ2sQLsRLaNU2LsMUZL
BETFL+BT2FL+BK+sSAMsSAFLsDM1.,DM2:BETA, X0
CEXP+DSORTF 1SL +BZ+,DABS+ DSIN,DCOS+BEB+YsY3.Y8
ETMsBT2M s ALFLWAFLsALMsAL2M,3TEP. Z1
SIGAFR+DF1ResDF2ReSAFRsSRFR+BT2FRETFR
ALFR+AFR+F ISRsMUZR +MUR+NUZRsNUR » ORsRR

REAL A(20+20)+B(20)eG(100)+WK(700),D1+D2sX(100)
IsJsKsLeMsNs TAs IDGT+IERs 1JOBsPs1Z
COMPLEX W(20)+2(20+20)

PI=3.14 1592654

INTEGER

THE 5%

0.05540¢
0.05571¢

OF1L=1.421447
OF1R=1.421447

DF2L=0.
DF2R=0.

231576
231576

DM1=1.152864
DM2=0.991810
BETA=0.0065

SAFL=0.

002076

SAFR=D.002082
X0=55.88
SAM=0D.5326368D~-07
SFL=0.08233
SFR=0.08397
SRFL=0.03364
SRFR=0.03447
SRM=0.00287363
¥0=22.65
B5=32.36
Ba=15.11
B3=22.65
B2=16.11
B1=32.36
B3=YD+B 2
Z1=68.32755

Al=111.

760

BZ=(PI/Z1)Y%2,

1J0B=2
N=20
IA=20
1Z=20

ARE THE 2 GRCOUP PARAMETERS
SIGAOM=0.00030661

SIGAFL=
SIGAFR=

ALL ZLEMENTS OF A ARE INITIALLY SET=0.
DO 10 I=1.,20
DO 11 J=1.20
AlIsd)=0.
CONTINUE
CONTINUE

D1=0.
THE SE

BK=(PI/Al1)%%2.
BT2M=8K + (SIGAON/DM2)+B2Z

STEPS CALCULATE THE SOLUTION EGUATION PARAMETERS
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61a BTM=D5QRT(BT2M)

62. BT2FL=BK+(SIGAFL/CF2L)+B2Z

63. BT2FR=BK+(SIGAFR/CF2R)+BZ

64. BTYTFL=DSCRT(BT2FL)

65. BTFR=DSQRT(BT2FR)

66. AL2M=BK + (SAM+SRM)/CM1+BZ

67, ALM=DSQRT(ALZ2M)

68. AFL=BK+ (SAFL+SRFL)/DF1L+B2Z

69. AFR=3K+ (SAFR+SRFR)/DF1R+B2Z

70. ALFL=DSGRT(AFL)

Tl. ALFR=DSORT(AFR)

T2. A2=(SRM/DM2)/(AL2M=BT2M)

T73. FISL=(SFLASRFL )/(DF1L=DF2L)

T4. FISR=(SFR%*“SRFR)/(CF1R=:DF2R)

75. MUZL=(AFL+BT2FL )/2.+DSART((AFL+3T2FL)ikZ e~ 4(BT2FL:AFL=-FISL) )/ 2.
T6. MUZR= (AFR+BT2FR) /2 .+DSART( (AFR+BT2FR ) %#%2. =4 =(BT2FR:AFR-FISR) ) /2.
77« MUL=DSGRT(MUZL )

T8« MUR=DSAGRT(MUZR)

79« NU2L=(AFL+BT2FL }/Z2.~-DSORT((AFL+BT2FL)%%2.=4%=(BT2FL=AFL=FISL)) /2.
B80. NUZR=(AFR+BT2FR)/Z.~-DSGRT((AFR*BT2FR)%%2.~4%=(BT2FRFAFR-FISR) ) /2.
81. NUL=DSQRT(DABS (NU2Z2L))

82. NUR=DSQRT(DABS (NU2FR))

83. QL= (SIFL/DF 2L )/ (MU2L=-BT2FL)

B4 . QR=(SRFR/DF2R)/(MUZ2R=-BT2FR)

85. RL=={SRFL/DF2L ) /({NU2L*BT2FL)
B6. RR==(SFR/DF2R)/(NU2R*BT2FR)
B7. C THESE STEPS LOAD MATRIX A

B88. A(ls1)=1.

89. All.2)=1.

90. Al2e3)=1.

91. Al2+s6)=1.

92. A{3.1)=DEXP(~ALMZE])

93. A(3.,2)=DEXP(ALWMZ=B1)

Q4. A(3.:5)=~1.

95. A(3.6)=-1.

96. Al3s7)=~1.

97. A(3+8)=0.

98. A(4+1)==A2%=DEXP(=ALM=:B1)

99. A(4e2)==-A2::DEXP (ALMEB1)

100. Al4+3)=DEXP(=BTMZPEL)

101. Al4 +4)=DEXP (BTWM=B1)

102. A(4.5)=QGL

103. Al4,6)=G0L

104. Al4,7)=RL

105. Al4+8)=0.

106. A(5:1)==DML=ALMZDEXP(=ALM%B1)
107. A(5+2)=DMIZ=ALMZDEXP(ALM=BL)
108. A(5+5)=DF1L=:MUL

109. A(S5+6)==DF1LHEMLL

110. A(5,7)=0.

111 A(S +65)=~DF1L&NUL

112. A(6+1)=DM2%:A2% ALMEDEXP( =ALM%B 1)
113. A(6+2)==DM2LA2SALMLDEXP (ALM=B 1)
114. A(6+3)==DM2BTVEDEXP(-BTM=B1)
115. A(B+4) FDM2EBTMEDEXP(BTMEBT )
116. A(6+5)==DF2L%QLEMUL

117. A(6,6)=DF2L%*QL #MUL

118. A(6+7T)=0.

119 A(6+B)=DF2L#RLENUL

120. AlT7+5)=DEXP(=MUL%E2)
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A(7+6)=DEXP(MUL=D2)

A(T7+7)=0COS (NUL=B2)
A{7+8)=DSIN(NUL%B2)

A(Ts?)="1.

A(T»10)==1.

A(B+5)==GQL=DEXP (=MULEB2)
A(B+6)==QL=DE XP (MUL%B2)
A(B+7)==RL&DCOS (NULZB2)
A(BsB)==-RLLEDSINI(NULZB2)
Al(B.9)=A2

A(B.,10) =A2

Al(Bs1l)="1.

A(Bsl12)==1e
A(9+5)=~DF1L=MULZ=DEXP (=MUL::B2)
A(9+6)=DFIL=MULZDEXP (MUL=B2)
A(9:7)==DFIL2NLLZDSIN(NUL:B2)
A(9+B)=DFIL#NULZDCOS{NULBZ)
A(94+3 )=DMLIZALM

A(94+10) =-DM 1::ALM

A(10,5) =DF2L%QLUMULEDEXP (=MUL %B2 )
A(10+5) ==DF 2L CLEMULEDE XP (MUL B2 )
A(10,7)=DF2L=RLENULZDSIN(NULEB2)
A(10+8) ==DF 2L#=FLENULZEDCOS(NUL B2 )
A(10+9) ==-DM2::AZ22ALM
A(10s10)=DM2::A2=ALM
A(10s11)=DM2::BTM
A(10+12)=~DM2%ETM

A{11+9) =DEXP(=ALM=B3)
A(11+10) =DEXP (ALM::B3)
A(l1s13)==1.

AlllslG)==1.

A{11,15)==1.

A(11.,16)=0.

A(12+9) ==A2%DEXP(~ALM=B3)
Al(12s10)=-A2%DEXP (ALM:=:B3)
A(12+11 )=DEXP(=BTM%B3)
A(12,12)=DEXP(ETM%B3)
A(12+13)=0R

A(12+14)=0R

A({12+15)=RR

A{12.16)=0.

A(13:9) ==DM1IALMLEDEXP (= ALM=E3 )
A(13+10)=DM1=ALMZDEXP(ALM%B3)
A(13s13)=DF1R%=MUR
A{13:14)=-DF1REMUR

A(13,15)=0.

A(13,16)==DF 1RZNUF

A(14,9) =DM22A2:ALMUDEXP (=ALMEB3)
A(14,10)==DM2:A2:ALMEDE XP (ALM:B3 )
A(l4s11 )==-DM2=BTMZDEXP( =BTM%B3 )
A(16+12)=DM2:BTMLDEXP(BTM=:B3)
A(14413)=-DF2R%ZQRUMUR

A(14+14 )=DF2R“CR2EMUR
A(14+15)=0.

A(l4s16)=DF 2R%=RR=NUR
Al1S5+13)=DEXP(~-MUP=:B4)

Al1S5+14 )=DEXP(VNMURZ:BY4)
A(15+15)=DCOS( NUR%E&)
A{15+16)=DSIN(NURX%BS )
All15,17)==1.
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A{15+,18)="1.

Al16+13)==-QR=DEXP ( =MUR=:B4)

A(16,164 )==QRFDEXP (MUR=E&)

A(16+15)=~RRuDCOS (NUR=B4)

A{16+16 )==RR=DESIN{NUR:Z:B4)

A(L16s17 )=A2

Al16,18)=A2

A(l1619)="1.

A(16+s20)==1.

A(17+13)=-DFLIRZMUR=DE XP ( ~MUR::B& )

A(17+14 )=DF 1R=MURZDEXP({ MURXB4 )

A(17+15)==DF1RZ=NUR=DSIN(NUR=B4&)

A(17+16)=DF IR%HZNUR:=:DCOS(NUR=B4 )

Al(17+17)=DM1::ALM

A(17,18)==DM1:=ALM

A(1B+13)=DF 2R%*=GR%*MUR#%DE XP{ =MUR*B 4 )

A{18,14)==DF2RLOREMUREDEXP (MUR%B & )

A(18415 )=DF 2RERRENUREDS IN(NUR%BG )

A{18416 )==-DF2R2RR=NURZDCODS (NUR%B4 )

A(1B8s17 )==DM2:A2ALM

A{1B8+18)=DM2:A23ALM

A(18219 )=DM2:xBTM

A(18,20)==DM2:ETM

A(19:17 )=DEXP(~-ALMZBS5)

Al(19+18)=DEXP( ALM::B5)

Al20s17)==A2DEXP( =ALM%BS )

A(20s18)1=~A2:DEXP(ALMZBS)

A(20s19 )=DEXP(~-BTM%B5)

A{20+20)=DEXP(EBTMZES)

THE IDENTITY MATRIX IS ADDED TO A

DO 40 T=1+20

A(IoI)=A(TIs1)+%1.

CONTINUE

THE LIBRARY SUBROUTINE EIGRF DETERMINES THE EIGENVALUES
AND ASSOCIATED EIGENVECTORS OF MATRIX A

CALL ZIGRF (AsNeTAWIJOBoWeZsIZsWK,IER)

THE EZIGENVECTORS ASSOCIATED WITH EIGENVALUE=1. ARE
LOCATED IN Z(1+20): THEY ARE THE COEFFICIENTS OF THE
FLUX SOLUTION EQUATIONS

DD 42 I=1.20

B(IJ)=REAL(Z(I»20))

CONTINUVE

IF (IER+EQ.130) GU TO 25

Y=0.

THIS IS THE STEP SIZE IN THE Y DIRECTION

STEP=142.24/60.

THIS LOOP CALCULATES THE FLUXES ACRDSS THE CORE

DD 20 K=1461

X(K)=Y

BB=0.

IF (Y.GT.B1) GC TO 60

Y2K1=3( 3)4DEXP (~BTM:Y ) +B( 4 )SDEXP (BTMRY ) =A2::(B(1)=DEXP(~ALM::Y)

E+B(2)HDEXP{ALM%EY))

¥YB=Y2K1

GD TD 69

CONTINUE

BB=Bl1¢*B2

IF (Y.GT.BB) GC TC 61

Yi=y=-(8E=-B2)

Y2K2==QLA(B(5) RDEXP{~MULXY3)+B(6)XDEXP(MUL%EY2))-RL&(B(7)=DCOS
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E(NUL:Y3 )+B(8)=:DSIN(NULEY3))

yB=yz2Xx2

GD T0 69

CONTINUE

BB=BB+B 2

IF (Y.GT.BB) GC TC 63

Y3=Y-(BE-B83)

Y2K4=B( 11)==DEXP (=ETM:Y3)+B (12 )4DEXP(BTM%:Y3 ) ~A2::(B (9 ):DEXP
E(=ALMEY3)+B(10)DEXP {ALMEY3))

YB=Y2K4

GO 7O 69

CONTINUE

BB=BE+B 4

IF (Y.6T.BB) GO TO 64

Y3=Y-(BB-B&4)

Y2K5==QR%(B(13)=DEXP(~MUR=Y3)+B(14)::DEXP(MUR%Y3)) -RR=(B(15)
EDCOSI(NUR=Y3)+B(16)%DSININUREY3) )

YB=Y2K5

GO T2 69

CONTINUE

Y3=Y-BB

Y2K6=B( 19):DEXP(=E TM:=xY3 )4B( 20 )%DEXP (BTMZY3 ) =A2% (B (17)=DEXP(-ALM

ZY3)+3(18)=DEXF(ALMZY3))

YB=Y2K6

CONTINUE

GIK)}=DS IN(XO=PI/AL1)%YDB

Y=Y+STEP

CONTINUE

THIS LDOP PUNCHES THE FLUXES; OTHER STEPS MAY BE INSERTECD

HERE TO PRINT OR GRAPH THE FLUXES

DO S0 I=1.61

WRITE (7+51)G(I1)

FORMAT (El12.5)

CONTINUE

STOP

END

SENTRY
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The last program, GFP-28, calculates d¢/dy.
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FORTGCGsREGION=192K+LIB="SYS]1.IMSL .DOUBLE"

oo

THIS PROGRAM 1S GFP2B-1T CALCS. D PHI/D Y FCR 2 GROUPS

AT
pouBL=
bouBLE
DOUBLE
DOUBLE
pboueLs
DOUBLE
DOUBLE

THE POINT
PRECISICN
PRECISICN
PRECISICN
PRECISICN
PREC ISION
PRECISICN
PRECISICN

YO ONLY
PIsSIGAOMsSIGAFL +DFIL+DF 2L +sAL1+B1+B2+683+B4.4+8B5
YO0sSRMsSRFLsSFL s SFReNULsMULsA2QLsRLsNUZL+MUZL
BTFLsBT2FL+BK+sSAMsSAFLsDM1+DM2BETALXO
DEXP+DSQRT+F ISL +BZ+DABS+DSINDCOS»BBeYsY3s¥3
BTUMBT2Ms ALFLsAFLs ALMAL2MSTEP,Z1

SIGAFR+sDF 1R+ DF2R sSAFR.SRFR8T2FRBTFR
ALFR+AFR+FISRsMUZ2R+MURsNUZ2R+NUR»QGRsRR

REAL A(20+20)sB(20)eG1l(10)sG(10)sWK{700)sD1+sD2sDETsG2
IedosKeLoMoho IA IDGT#IER. 1JOB P12
COMPLEX W(20)+2(20+20)

INTEGER

PI=3.14

1892654

THESE ARE THE TwWO GROUP PARAMETERS

SIGACM=0.00030661

SIGAFL=
SIGAF=3=
DF1L=1.
DF1IR=1.
DF2L=D.
DF2R=0.
DM1=1.1

0.05540¢
0.055719
421447
421447
231576
231576
52864

DM2=0.991810

BETA=0.
SAFL=0.
SAFR=0.
X0=55.8

S5AM=0.5326368D-07

SFL=0.0

0065
002076
oo2082
-]

8233

SFR=0.08397

SRFL=0.
SRFR=0.

03364
03447

SRM=0.00287363

Y0=22.6
B5=32.3
Ba=16.1

-]
6
1

B3=22.6%
B2=16.11
B1=32.36
83=Y0o+E 3
Z1=68.32755

Al=111.

760

BZ=(PI/Z1)%%2.

1JoB=2
N=20
IA=20
1z=20
G(1)=0D.
Y=B1+32
STEP=1.
¥Y=Y=-5TE

+Y0
28/100.
P

THE FLUX IS CALCULATED THREE TIMES AT YO=STEP.YO«AND

YO+

STEPs AND

DEL PHI/DEL Y IS DETERMINED FROM

((PHI*STEP)=PHI)/STEP

DO 20 K

=1s3

THE ELEMENTS OF A ARE INITIALLY SET=0.

DO 10 1

=1+20
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61l. DO 11 J=1.20

62 A(l+J)=0.

63. 11 CONTINUE

64, 10 CONTINUE

65. D1=0.

66 C THE SOLUTION EGUATION PARAMETERS ARE CALCULATED HERE
67 BK=(PI/A1)%:%2.

68. BT2M=BK +(SIGAOM/DMZ) +BZ

69 BTM=DSQRT(BT2M)

T0. BT2FL=BK+(SIGAFL/DF2L)+BZ

Tle BT2FR=BK+(SIGAFR/DF2R)+BZ

72. BTFL=DSCGRT(BT2FL)

73. BTFR=DSQRT(BT2FR)

T4 ALZ2M=BK + (SAM+SRM)/DM1+BZ

75 ALM=DSQRT(ALZM)

T6. AFL=BK+ (SAFL+SRFL)/DF1L+BZ
77 AFR=BXK + (SAFR*SRFR)/DF1R+BZ
78 ALFL=DSGQRT(AFL)

T9. ALFR=DSGRT(AFR)

80. A2= (SIM/DM2)/(ALZ2M=BT2M)

8l. FISL=(SFL%SRFL })/(DF1L%=DF2L)
82. FISR=(SFR%“SRFR )/(DF1R=DF2R)
83. MU2L=(AFL*BT2FL)/2.+DSQRT((AFL4BT2FL)=%2 4= 4x(BT2FLHAFL-FISL)) /2.
84 MU2R=(AFR4BT2FR)/2.+DSQRT( (AFR+BT2FR ) %42 =4 (BT2FRAUAFR-FISR)) /2.
85. MUL=DSQRT(MU2L )

B86. MUR=D5QRT(MUZR)

87. NUZL=(AFL*BT2FL)/2.-DSART((AFL+BT2FL) %2 . ~4x(BT2FL=*AFL=FISL)) /2.
88. NU2R=(AFR+BT2FR)}/Z2.~DSART((AFR+BT2FR)%L%x2.~4%=(BET2FRZAFR~-FISR)) /2.
89. NUL=DSQRT(DABS (NU2L) )

90. NUR=DSQRT(DABS (NUZR))

91. QL=(53FL /DF 2L ) /(MU2L-BT2FL)
92. QR=(SRFR/DF 2R) /(MU2R-BT2FR)
93. RL==(SFL/DF2L) /(NU2L+*BT2FL)
4. RR==-(5RFR/DF2R)/(NU2R+BT2FR)
95. C MATRIX A IS LOADED HERE

96. Allsl)=1.

97 Alls,2)=1.

98. Al24+3)=1.

99. Al246)=1.

100. A{3+1)=DEXP(=ALMNZ:EL)

101. A(2,2)=DEXP (ALM%B1)

102. A(3,5)=-1.

103. A(3.6)=-1.

104. A(3+7)=~1.

105. A(3,8)=0.

106 AlG o1 )==A2%=DEXP(=ALM=B1 )

107. A(G+2)==A2:==DEXP (ALMEB1)

108. A(4+3)=DEXP(=BTWV=B1)

109. A(4+4)=DEXP(BTHFZE1)

110. A4 +5)=GL

111. Al4a.6)=QL

112. A4 .7)=RL

113. Al4+8)=0.

114. A(5+1)==DML1::ALVMZDEXP(~ALM%B1)
115. A(5+2)=DMLI=ALMEDEXP(ALMSB1)
116. A(S5.5)=DF1L=MUL

117. A({S+6)==-DF1L=MLL

118. A(5:7)=0.

119. A(S+8)=~DFILENUL

120. A(G sl ) =DM A2 ALMEDEXP( ~ALMZB 1)
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A(6+2)=~DM2 A2 HALMEDEXP (ALMEB 1)
A(633)==DM2:BTVMEDEXP (=B TM:BL)
A(G +4)=DM2:BTMIDEXP(BTM::BI1)
A(6+5)==DF2L=GLEMUL
A(6+6)=DF2L QL 2MUL

A(6+7)=0.

A(6 +8)=DF2L%RLINUL

A(T+5)=DEXP (-MUL=B2)
A(7+6)=DEXP(MULZB2)

A(T7+7)=DCOS (NUL=B2)
A{7+B)=DSINI(NUL=B2)

AlTs9)="1.

A(T7+10) =-1.

A(B+5)==QL*DEXP (=MUL%B2)
A(B+6)==-0LEDEXP (MUL=B2)
A(B+7)=~-RLEDCOS(NULEBZ)
A(B+8)=~-RLEDSININULZEB2)
AlB»9)=A2

A(B.10) =A2

AlBsll)==1.

A{Bsl2)=~1.
A(9:5)==-DF1L=MUL=DEXP (=MUL %B2 )
A(9+6) =DFIL “MULZDEXP(MUL=B2)
Al97)==DFILENULZ=DSINI(NULZB2)
Al(9+B)=DFIL=NULEDCOS(NULZB2)

A(9 9 )=DMIZ=ALM

A(910) ==DM1%=ALM

A(10s5) =DF2L=QLUMULSDEXP (=MUL B2 )
A(10+6) ==-DF 2L CQL=MUL%DE XP( MUL 2B2)
A(10+7)=DF2L%=RLENULSDSIN(NUL®=B2)
A(10+8) =-DF 2L=RLENUL=DCOS (NUL =B2)
A(10+9) ==DM2%A2ZALM

A(10.10 )=DM2%A2::ALM
A(10+11)=DM2%BTM
A{10e12)=-DM2EBTM

A(11+9) =DEXP(=~ALMZ=B3)
A(11+10)=DEXP(ALM%:B3)
A(lls13)=-1.

Alllsl4)==-1.

A(l1s15)==1.

A(11,16)=0.

Al12s9) =-A2#DEXP{=ALM#%B3)
A(12+,10)=-A2%DEXP(ALMZ=E3)
A(12+11 )=DEXP(~BTM%B3)
A(12+12)=DEXP(BTM%B3)
A(12,13)=0GR

Al(12+:14)=GR

A(12+15)=RR

A(12+16)=0.

A(13s9) ==DM1I%ALMEDEXP (= ALMXB3 )
A(13+10)=DM1%=ALMZDEXP (ALMZB3)
A(13,13)=DF IREMUR
A(13+14)="DF1RZMUR

A(13.,15)=0.

A(13+16)==DFIRZNUR

A(1449 ) =DM2:A2LALMEDEXP (-ALMEB3)
A(l4+10)==-DM2%A2=ALMEDE XP ( ALM%:B3 )
A(l4s11 )==DM2%BTMZDEXP(~-BTM=B3)
Al14+12)=DM2%BTM=DEXP (BTMZB3)
A{l14,13)=-DF2REQREMUR
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A(164,16)=DF 2R%“CR%MUR

A(164,15)=0.

A(14,16)=DF 2R“RR%=NUR

A(15,13)=DEXP( =MUR%B4&)

A(15s14 )=DEXP(MURZB& )

A(15,15)=DCOS(NUR%B4 )

A(15516 )=DSIN(NURZ:E4)

A(15,17)==1.

A(15s18)=-1.

A(16,13)==QREDE XP { “MUR%B4 )

A(16+164 )=-QR&DEXP (MURRB4)

A(16+15)==-RRZDCOS (NUR%B 4 )

A(16+16)=-RR=DSIN(NUR%B& )

Al16417)=A2

A(16418)=A2

AC16+19)=-1.

A(16:20)==1.

A(17+13)==DF1IRSMURZDEXP ( =MUR:B4 )

A(17+14 )=DF IR“MURZDEXP ( MUR%:B& )

Al17+15)=-DF IR*NUR%DSIN (NUR%B &)

AC17416)=DF IRENUR%:DCOS( NUR:=B4 }

ACL17+17)=DMI%ALM

A(17+18)==DMI%ALM

A(1B.13)=DF 2R“GR*MUR%DE XP ( ~MUR%B4 )

A{1B+14 )==DF2R*CR=MURZDEXP ( MUR%B4 )

A(18,15)=DF 2ZR=RRENUREDS IN (NUR®XB4 )

A(18416)=-DF2R*RR=NURSDCOS (NUR%:B4& )

A(1By17)==DM2%:A22ALM

A(18,18)=DM2=A2HALM

A(18,19)=DM2=BTM

A(18,20)==DM2=ETM

A(19:17)=DEXP(=ALM%BS)

A(19,:18)=DEXP( ALMZES )

A(20+17)==A2%DEXP( ~ALM%B5)

A(20+18)==A2%DEXP (ALM%65)

A(20,19)=DEXP(=-BTM%85)

A(20,20)=DEXP(ETMZES)

THE IDENTITY MATRIX 1S ADDED TO A HERE

DO 40 I1=1,20

AlII)=ACIs104+1.

CONTINUVE

THE LIBRARY SUBROUTINE EIGRF IS USED TD CALCULATE THE
EIGENVALUES AND ASSOCIATED EIGENVECTORS OF MATRIX

CALL ZIGRF (AsNsIA,IJOB+WsZeIZ,WKW1ER)

THE FUNDAMENTAL EIGENVECTOR IS LOCATED IN Z(I.20)

DD 42 1=1,20

BOI)=REAL(Z(I.+20))

CONTINUE

IF (IER.EQ.130) GC TO 25

THESE STEPS DETERMINE WHICH SOLUTION EQUATION IS USED
IS USED FOR THE VALUE OF Y= IN THIS CASE ONLY THE
ZQUATIONSs Y2K3 AND Y2K4s ARE USED.

BB=0.

IF (Y.GT.B1) GC TO 60

A

FOR THE
CENTRAL

Y2K1=B(3)<DEXP (-BTMEY )} +B(4)ZDEXP (BTMuY) =A25(B(1)%DEXP (=ALMY)

E+B(2) :DEXP(ALMZY))
yB=yv2K1

GO TO 69

CONTINUE

BB=B1+82
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IF (Y.GT.BB) GC TO 61

Y3=y-(eB-B2)

¥2K2=-0L%(B(5)=DEXP(~MUL%Y3)+B(6)DEXP(MUL=Y3) ) =RLE(B(7)I%DCOS
E(NUL%Y3)+B(B8)%DSININULEY3))

YyB=Y2K2

GO TD 69

CONTINUE

BB=63+8 3

IF (Y.GT.BB) GC TO 63

Yi=y-(BB-B3)

Y2K4=B( 11)%DEXP(=BTMEY3I)+B( 12)%DEXP (BTM:Y 3 ) =A2% (B (G )LEXP
E(=ALMZY3)4B (10 )=DEXP (ALM:=:Y3))

YB=Y2K4

GO TO 69

CONTINUE

BB=B3+B4

IF (Y.GT.BB) GC TO 64

Y3=yY-(BB-B4)

Y2K5==0R%=(B(13)%DEXP(-MUR%Y3) +B( 14)=DEXP(MUR%Y3) ) =RRE(E(15)
E#“DCOS(NURZY3)+E(16)=DSIN(NUREY3))

YB=Y2K5

GO TJ 69

CONTINUE

Y3=Y-88

Y2K6=3( 19)%DEXP(~BTM:Y3 )+B(20)=DEXP (BTMEY 3 ) -A2:(B(17)DEXP(-ALM
EY3)+B( 1B)=DEXP (ALMXY3) )

YB=Y2K6

CONTINUE

THESE STEPS CALCULATE DEL PHI/DEL Y

IF (K«EQ.1) GO TO 70

L=K=1

G2=6G(L)

GO 70 71

G2=G(K)

G(K)=DS IN(XO0%=PI/A1)=YB

GI(K)=(G(K)-G2)/STEP

WRITE (6+98) Ks+G(K)eG2+G1(K)

FORMAT (" K="3 125 "GI(K)="sD12.5+"G2="4D12.5+°G1(K)="sD12.5)

Y=Y+STEP

CONTINUE

Y=B14B2+Y0-STEP/2.

THESE STEPS PRINT AND PUNCH THE RESULTS

DO 30 K=243

WRITE (6+32) Y»Gl(K)

FORMAT (" AT Y= *"4,FB8.3+" D PHI/D X = *sD12.5)

Y=Y+STEP

CONTINUE

WRITE (7+45) G1(3)

FORMAT (El2.5)

sToP

END

//G0.SYSIN DD %
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le //7C300 JOB U2T7BOsW.H

2e //STEP EXEC FORTGCG+REGION=192K

Ja //FORT .SYSIN DD %

4 e C THIS PROGRAM 1S PLOT= IT PLOTS THE DETECTOR RESPONSE
Se C THE VALUES OF ALL INPUT ARE ALSO PRINTED

G G THE INPUT COMES FFOM GF P24, GFP25, GFP27, AND GFP28
7a REAL PHI(100)+C1(100)+G2(100)+G3(100)+Ga,yX(100)

8. INTEGER 1

9. READ (5,10) G4

10. 10 FORMAT (E12.5)

11e WRITE (6,20) G4

12. 20 FORMAT (* Ga= *4E12.5)

113. DD 11 I=1.61

lé. READ (54+12) X(1)sG3LT)

15. 12 FORMAT (F6.2+E12.56)

16. WRITE (€+22) X(1).G3(1)

17. 22 FORMAT (* Y= *" ,F6.20" GI= *,E12.5)

18. 11 CONTINUE

19. DO 13 I=1.61

20. READ (5.14) G2(1)

21 14 FORMAT (E12.5)

22 13 CONTINVE

23. DO 15 1=1,61

24. READ (5.,16) G1(1)

25, 16 FORMAT (E12.5)

26, PHI(1)=Ga43G3(]1)+4G2(1)%G1(1)

27. WRITE (6+17) X(I1)sPHIC(])

28. 17 FORMAT (* Y= *+F6.2+" DEL PHI= *:E12.5)

29 WRITE (6+27) G2(1)+G1(1)

30. 27 FORMAT (* G2= *,E12.5+" Gl1= *,E12,.5)

3le 15 CONTINUE

2. CALL GRAPH (61 +XsPHIs11+1¢100+840+15.000.020.0540.0
33. Es"Ys CHMi*s"DETECTCR RESPONSE{*»"PLOT:"+*"X=55.88:")
34 . sSTOP

3%, END

36. /7GO0.SYSIN DD =%

37. //GD«FTI14F001 DD DSNAMEZESMsUNIT=SCRTCH:DISP=(NEWsPASS)
38. 7/ SPACE=(BO0+(120+15))+DCB=(RECFM=VBS +LRECL=796,BLKSIZE=B00)

39. //SHMPLTTR EXEC PLOT.PLOTTER=PRINTER
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XI. APPENDIX B: CONSTANTS USED IN THE COMPUTER PROGRAMS

This appendix contains a list of variable names used in the
computer programs and the variable's common names. The letters R and
L after some of the variable names found in the program refer to the

right (south) and left (north) cores, respectively.

Variable Name Common Name, Description
PI L

SIGAOM La20 (graphite)

SIGAF La20 (fuel)

DF1 D (fuel, group 1)

DF2 D (fuel, group 2)

Al Total x dimension

Bl 0-Bl dimension

B2 Bl-B2 dimension

B3 B2-B3 or Y¢$-B3 dimension

B4 B3-B4 dimension

B5 B4-B5 dimension

Yo B2-Y¢ dimension

SRM Zr1 (graphite)

SRF IZR1 (fuel)

SF Z¢ (group 1)

SAM L,1 (graphite)

SAF I41 (fuel)

DM1 D (graphite, group 1)

DM2 D (graphite, group 2)

Beta ]

Z Z dimension

X0 X position of perturbation

Y Y position of detector

X1 X position of detector

The values used for the reactor cross section data given in the
programs of Appendix A are data used for program testing. The values

used in the final calculations are listed in Appendix C.
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XII. APPENDIX C: REACTOR DATA

This appendix lists the reactor data used for the theoretical
model. The computer program LEOPARD [8] was used to generate the
two-group cross sections for the calculations. Input data for the
LEOPARD code is also included.

The input data required for LEOPARD are volume fractions of
aluminum and water and the atom densities of U-235 and U-238. If
desired, a nonlattice fraction can be included to account for the
portion of the core that is not part of the repeating unit cell.

The procedure used for preparing the input for LEOPARD basically
followed the procedures described by Al-Ammar [5] and Salih [10].

A nonlattice fraction was calculated using the aluminum core
tank, aluminum dividers, nonfuel bearing aluminum in the edges of the
fuel plates, and water between these edges. The height of the material
was taken as 23 inches (58.4 cm), the length of the fuel bearing

portion of the fuel plates. The following volumes were used:

Aluminum in core tank 302 in3 (4.95 x 103 cm3)
Aluminum in dividers 115 in3 (1.89 x 103 cm3)
Aluminum in edges of 33 in3 (541 cm3)

fuel plates
Edge water 152 in3 (2.49 x lO3 cm3)

3

Based on a total core tank volume of 2.98 x 10 in3 (4,89 x 104 cm ),

the nonlattice fraction was calculated as
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4.95 x 103 + 1.89 x 103 + 541 + 2.49 x 103

4.89 x 10&

= 0.202.

The fraction that is aluminum is 0.748 and the fraction that is water
is 0.252. The U-235 and U-238 atom densities were based on 1483 gm
for the north core and 1502 gm for the south core (loading pattern B).

Using the relationship

3 _ (gm of fuel)(6.02 x 10°°)
(235) (volume of fuel plates)

atoms/cm

the following atom densities were calculated.
North core
U-235 - 1.27 x lO21 atoms/cm3
U-238 - 8.30 x 1019 atoms/cm3
South core
U-235 - 1.29 x 1021 atoms/cm3
U-238 - 8.51 x 10%? atoms/cm3

The LEOPARD input data follows:

SHEET A COLUMN
TITLE
a. 1 3
b. 0 6
I | 9
dq 2 12
e. 1 15
3 R | 18
T 21
h. NE
i. NE
j. NE
k. NE
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(Sheet A continued)

1. NE
m. NE
n. 0 42
o. NE
p. NE
q. =2 51
¥ 0 54
SHEET B North Core

Volume Fractions:

Index Pellet Clad Moderator Extra
9 1.0 s 0.0 0.748

18 0.00127 0.0 0.0 0.0
20 0.0000830 0.0 0.0 0.0
100 0.0 0.0 1.0 0.252
177 0.0 0.0 0.0 0.0
173 0.0 0.0 0.0 0.0

Temperatures, buckling, and peaking factor:l

80. 80. 80. 80. 0.002904 1.0

Radii and nonlattice factor:l

0.02 0.04 0.48 - - 0.2019

1
Pressure:

14..7

i
Applies to both cores
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SHEET B South Core

Volupe Fractions:

Index Pellet Clad Moderator Extra
9 1.0 1.0 0.0 0.748
18 0.00129 0.0 0.0 0.0
20 0.0000851 0.0 0.0 0.0
100 0.0 0.0 1.0 0.252
777 0.0 0.0 0.0 0.0
777 0.0 0.0 0.0 0.0
SHEET B Graphite

Volume Fractions:

Index Pellet Clad Moderator Extra

4 10 1.0 1.0 0.0
177 0.0 0.0 0.0 0.0
n777 0.0 050 0.0 0.0

Temperatures, buckling, and peaking factor:

Same as cores

Radii and nonlattice factor:

0.02 0.04 0.48 - —_— .

Pressure:

Same as cores

The two group output data are presented in the following tables

for loading pattern B.
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North Core LEOPARD Output

D, 1.4064

D, 0.22302

T 0.19756x10 2
al

T 0.34250x10
¥l

% 0.53385x10_l
a2

VI 0.78021x10

South Core LEOPARD Output

D, 1.4064

D, 0.22313

T 0.19912x10 2
al

T 0.34238x10 *
o |

5 0.53788x10 *
a2

v, 0.78879x10 -

GraEhite

D, 1.16541

D, 0.99152

£y 0.0

T 0.25256x10 2
rl

z 0.20127x10>
a2

The core dimensions used were:

Core length (graphite plus fuel) - 142.24 cm
Core width - 111.76 cm

Width of core tanks - 16.11 cm

Width of internal reflector - 45.30 cm

Width of external reflectors - 32.36 cm
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